
Normalizing Source Code Vocabulary to Support
Program Comprehension and Software Quality

Latifa Guerrouj
DGIGL - SOCCER Lab, Ptidej Team

Polytechnique Montréal, Québec, Canada
latifa.guerrouj@polymtl.ca

Abstract—The literature reports that source code lexicon
plays a paramount role in program comprehension, especially
when software documentation is scarce, outdated or simply not
available. In source code, a significant proportion of vocabulary
can be either acronyms and-or abbreviations or concatenation
of terms that can not be identified using consistent mechanisms
such as naming conventions.

It is, therefore, essential to disambiguate concepts conveyed by
identifiers to support program comprehension and reap the full
benefit of Information Retrieval-based techniques (e.g., feature
location and traceability) whose linguistic information (i.e., source
code identifiers and comments) used across all software artifacts
(e.g., requirements, design, change requests, tests, and source
code) must be consistent.

To this aim, we propose source code vocabulary normalization
approaches that exploit contextual information to align the
vocabulary found in the source code with that found in other
software artifacts. We were inspired in the choice of context levels
by prior works and by our findings. Normalization consists of two
tasks: splitting and expansion of source code identifiers. We also
investigate the effect of source code vocabulary normalization
approaches on software maintenance tasks.

Results of our evaluation show that our contextual-aware tech-
niques are accurate and efficient in terms of computation time
than state of the art alternatives. In addition, our findings reveal
that feature location techniques can benefit from vocabulary
normalization when no dynamic information is available.

Index Terms—Source code linguistic analysis, information
retrieval, program comprehension, software quality

I. RESEARCH CONTEXT: PROGRAM COMPREHENSION AND
SOFTWARE QUALITY

Understanding source code is a necessary step for
many program comprehension, reverse engineering, or re-
documentation tasks. In source code, identifiers (e.g., names
of classes, methods, parameters, or attributes, etc.) account for
approximately more than half of linguistic information [1].

Many researchers have shown the usefulness of source
identifiers to enhance program comprehension and software
quality and their relevance for maintenance and evolution [2],
[3], [4], [5]. Other research works have used identifiers to
recover traceability links [6], [7], [8], measure conceptual
cohesion and coupling [9], [10], and, in general, as an asset
that can highly affect source code maintainability [2], [4], [5].

Other researchers [11], [12] assessed the quality of iden-
tifiers, and comments, plus the information carried by the
terms that compose them. They all concluded that identifiers,
if carefully chosen, reflect the semantics and the role of the
named entities they are intended to label.

Stemming from Deißenböck and Pizka observation on the
significance of identifiers to capture programmers’ intent
and encode knowledge in software. Many works have been
achieved to identify concepts embedded in identifers. To
the best of our knowledge, these families are: CamelCase,
the de-facto splitting algorithm based on the use of naming
conventions. Samurai [13], an approach that relies on a lexicon
and uses greedy algorithms to identify component words,
plus GenTest [14] and Normalize [15]. GenTest is a splitting
algorithm that generates all possible splittings and evaluates a
scoring function against each proposed splitting; it uses a set
of metrics to characterize the quality of the split. Normalize is
a refinement of GenTest towards the expansion of identifiers.
Normalize deals with identifier expansion using a machine
translation technique, the maximum coherence model. The
heart of Normalize is a similarity metric computed from co-
occurrence data. Co-occurrence data with context information
is exploited to select the best expansion.

The novel approaches we suggested to tackle our chal-
lenge are TIDIER and TRIS. TIDIER is inspired by speech
recognition technique and exploits context in the form of
specialized dictionaries [16]. TRIS is inspired by TIDIER,
however, its problem formulation and solution is novel and
its implementation is fast and accurate. It models the problem
as an optimization (minimization) one i.e., the search of the
shortest path (optimal split/expansion) in a weighted graph
[17]. We also studied the effect of source code vocabulary nor-
malization on feature location techniques. Results of our study
outline potential benefits of putting additional research efforts
into defining more sophisticated source code preprocessing
techniques as they are useful in situations where execution
information cannot be easily collected [18]. Currently, we are
targeting other applications, namely, traceability and labeling
of execution traces segments. Also, we are preparing additional
studies to investigate the effect of source code lexicon on
program comprehension and software quality.

II. OVERARCHING QUESTION OF OUR THESIS

The research question of our thesis can be stated as follows:
How to automatically disambiguate concepts conveyed by

identifiers using context to help developers understand pro-
grams and support software maintenance tasks, and to what
extent our techniques will enhance program comprehension
and software quality?

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Doctoral Symposium

1385

III. ANSWER

To answer our main research question, we first tackled
the source code vocabulary normalization approaches part.
Our initial findings is TIDIER [16], a technique that uses
a thesaurus of words and abbreviations, plus a string-edit
distance between terms and words computed via Dynamic
Time Warping. TIDIER main assumption is that it is possible
to mimic developers when creating an identifier relying on
a set of words transformations. For example, to create an
identifier for a variable that counts the number of software
bugs, the two words, number and bugs, can be concatenated
with or without an underscore, or following the Camel Case
convention e.g., bugs number, bugsnumber or bugsNumber.
It also assumes that developers may drop vowels and (or)
characters to shorten one or both words of the identifier,
thus creating bugsNbr or nbrOfbugs. TIDIER works well in
comparison with approaches that have been suggested prior
to it. It attained its best performances when using contextual-
aware dictionaries enriched with domain knowledge. However,
TIDIER computation time increases with the increase of the
dictionary size due to its cubic distance evaluation cost plus
the search time. That is why we suggested a novel approach,
TRIS. TRIS takes as input a dictionary of words (e.g., taken
from an upper domain ontology), and the source code of
the program to analyze. It represents transformations as a
rooted directory tree where every node is a letter and every
path in the tree represent a transformation having a given
cost. Based on such transformations, possible splittings and
expansions of an identifier are represented as an acyclic direct
graph where again nodes represent letters and edges represent
transformation costs. Once such a graph is built, solving the
optimal splitting and expansion problem means determining
the shortest path in the identifier graph.

To analyze the impact of sophisticated source code vo-
cabulary normalization approaches on software maintenance,
we first applied a set of techniques CamelCase, Samurai
[13] and TIDIER [16] on two feature location techniques,
one based on Information Retrieval and the other one based
on the combination of Information Retrieval and dynamic
analysis, for locating bugs and features. The results show that
feature location techniques using Information Retrieval can
benefit from better preprocessing algorithms in some cases,
and that their improvement in effectiveness while using manual
splitting over state-of-the-art approaches is statistically signif-
icant in those cases. However, the results for feature location
technique using the combination of Information Retrieval and
dynamic analysis do not show any improvement while using
manual splitting, indicating that any preprocessing technique
will suffice if execution data is available [18].

IV. METHODOLOGY

To answer our research question, we follow a methodology
where the main phases are detailed below. Details about our
achieved works are found in the corresponding publications.

1. Building Dictionaries: To map terms or transformed
words composing identifiers to dictionary words, we build
contextual-aware dictionaries containing words and terms be-
longing to the applications, known acronyms/abbreviations,
and library functions [16].

2. Building Oracles: To validate our approach, we need
an oracle. This means that for each identifier, we will have a
list of terms obtained after splitting it and, wherever needed,
expanding contracted words. The oracle is produced following
a consensus approach: (i) a splitting of each sampled identifier,
and expanded abbreviations is produced independently (ii)
In a few cases, disagreements were discussed among all the
authors. We adapted this approach in order to minimize the
bias and the risk of producing erroneous results. This decision
was motivated by the complexity of identifiers, which capture
developers domain and solution knowledge, experience, and
personal preference [16], [18].

3. Empirical Evaluation: To evaluate our suggested ap-
proaches, we conducted empirical studies where the quality
focus is the precision, recall, and F-Measure. We applied
TIDIER on identifiers sampled from benchmark of 340 C
identifiers [16]. We used the same benchmark to evaluate
TRIS, plus two other systems JHotDraw, Lynx, and a set of
Java, C, and C++ identifiers used by Lawrie et al. [14]. To
statistically compare our approaches with state of the art ones,
we performed statistical tests, namely, Wilcoxon and Fisher
exact tests. W also provide quantitative information about the
practical relevance of the observed differences in terms of
effect size (Cliffs delta or Odd-Ratio, depending on the test
performed).

To analyze if sophisticated splitting and expansion would
still be helpful to improve accuracy of feature location
techniques applied in different scenarios and settings, we
performed an empirical evaluation on two feature location
techniques: one based on Information Retrieval and the other
one based on the combination of Information Retrieval and
dynamic analysis, for locating bugs and features of two open-
source systems, Rhino and jEdit. Results of our extensive
empirical evaluation can be found in [18]. We are currently
following the same methodology for traceability. We wish to
run more empirical studies on open-source projects, try to
analyze patches and bug reports to see wether there are some
bugs introduced due to the use of identifiers. This points will
helps us bring some empirical evidence on the intuition that
source code lexicon impacts software quality.

4. Experimental Studies: To prove the relevance of context
for source code vocabulary normalization tasks, we conducted
an experiment with 42 subjects, including bachelor, master,
Ph.D. students, and post-docs. We randomly sampled a set of
50 identifiers from a corpus of open source C programs and
asked subjects to split and expand 40 different identifiers using
internal and external contexts: (i) source code functions, (ii)
source code files, and (iii) source code files, plus a thesaurus
of acronyms and abbreviations.

1386

V. ON-GOING WORK AND FORCAST COMPLETION

At this time of our thesis, we achieved the main phases of
our project: we developed accurate approaches to tackle our
problem, we run experimental studies with developers to know
what components are of interest for our approaches, and finally
we started applying our techniques. We applied one of them
with previous ones on feature location and we are currently
investigating them on traceability [6]. Also, we are studying
the evolution and quality of source code lexicon.

Our on-going work consists on addressing the research
questions that have not been addressed yet, running more
empirical studies on other applications and systems. Also, we
would like to run more studies on how developers formulate
and use identifiers to further generalize the results of TIDIER
since word transformations may not be helpful for other
software such as mathematical one where a quite number
of variables as i, j, and k are declared. In addition, we
plan to perform more experiments with subjects on identifiers
and their impact of different program comprehension and
software evolution tasks. Our final goal would be to integrate
our techniques in an Integrated Development Environment to
help developers write consistent identifiers and hence improve
quality of their code.

VI. RELATED WORK

In this section, we describe the most relevant contributions
to our research project.

Early work [19], [20] on program comprehension and
mental models—programmers’ mental representation of the
program being maintained—highlighted the significance of
textual information to capture and encode programmers’ intent
and knowledge in software. The role of identifier naming was
also investigated by Anquetil et al. [21], who suggested the
existence—in the source code lexicon—of “hard-terms” that
encode core concepts.

Takang et al. [2] empirically studied the role of identifiers
and comments on source code understanding. They compared
abbreviated identifiers to full-word identifiers and uncom-
mented code to commented code. The results of their study
showed that commented programs are more understandable
than non-commented programs and that programs containing
full-word identifiers are more understandable than those with
abbreviated identifiers.

Caprile and Tonella [3] performed an in-depth analysis
of the internal structure of identifiers. They showed that
identifiers are an important source of information about system
concepts and that the information they convey is often the
starting point of program comprehension. Other researchers
[11], [12] assessed the quality of identifiers, their syntactic
structure, plus the information carried by the terms that
compose them.

Deißenböck et al. [1] provided a set of guidelines to pro-
duce high-quality identifiers. With such guidelines, identifiers
should contain enough information for a software engineer to
understand the program concepts.

Lawrie et al. [4] attempted to assess the quality of source
code identifiers. They suggested an approach, named QALP
(Quality Assessment using Language Processing), relying on
the textual similarity between related software artifacts. The
QALP tool leverages identifiers and related comments to
characterize the quality of a program. The results of their
empirical study indicated that full words as well as recogniz-
able abbreviations contribute to better program understanding.
Their work suggested that the recognition of words composing
identifiers, and, thus, of the domain concepts associated with
them could contribute to a better comprehension.

Binkley et al. [22] investigated the use of the identifier sep-
arators, namely the Camel Case convention and underscores
in program comprehension. They found that the Camel Case
convention led to better understanding than underscores, and
when subjects are properly trained, that subjects performed
faster with identifiers built using the Camel Case convention
rather than those with underscores.

Overall, prior work reveals that identifiers represent an
important source of domain information, and that meaningful
identifiers improves software quality and reduce the time
and effort to acquire a basic comprehension level for any
maintenance task.

Many cognitive models have been proposed in the literature
and they all rely on the programmers’ own knowledge, the
source code and available documentation [20]. Disparities
between various comprehension models can be explained in
terms of differences in experimental factors such as program-
mer characteristics, program characteristics and task charac-
teristics that influence the comprehension process [23].

Robillard et al. [24] performed an exploratory study to
assess how developers investigate context, more precisely,
source code when performing a software change task. Their
study involved five developers performing a change task on
a medium-size open source system. The main outcome of
their study supports the intuitive notion that a methodical
and structured approach to program investigation is the most
effective. Their main findings related to our work is the fact
that prior to performing a task, developers must discover and
understand the subset of the system relevant to the task. Thus,
task context is important to understand the task at hand and
avoid information overload.

Kersten et al. [25] presented a mechanism that captures,
models, and persists the elements and relations relevant to
a task. They showed how their task context model reduces
information overload and focuses a programmers’ work by
filtering and ranking the information presented by the develop-
ment environment. They implemented their task context model
as a tool, Maylar, for the Eclipse development environment.
In their paper, a task context represents the program elements
and relationships relevant to completing a particular task.

Sillito et al. [26] provided an empirical foundation for
tool design based on an exploration of what programmers
need to understand and of how they use tools to discover
that information while performing a change task. The results
of their study point to the need to move tools closer to

1387

programmers’ questions and the process of answering those
questions and also suggest ways that tools can do this, for
example, by maintaining and using more types of context and
by providing support for working with larger and more diverse
groups of entities and relationships.

We share with the above mentioned works the idea that
source code lexicon plays a paramount role in program
comprehension and software quality. We also agree that task
context is important when performing source code vocabulary
normalization approaches. Our goal, however, is to show the
extent to which contextual source code vocabulary normal-
ization techniques can improve program comprehension and
software quality.

VII. CONCLUSION

Our initial contributions yields to accurate approaches for
source code vocabulary normalization, namely, TRIS. TRIS
formalizes the studied problem as an optimization problem
where the aim is to find optimal the splitting/expansion in
acyclic graph. TRIS exploits context because it has been
proven by prior works and also by our findings that con-
textual information is relevant for our problem. Application
of sophisticated normalization approaches on feature location
techniques show that such tasks could be still helpful when no
dynamic information is available. We are currently evaluating
our techniques on additional software maintenance tasks. Our
future work will focus on indepth studies for enhancing
program comprehension and software quality using source
code vocabulary normalization.

VIII. ACKNOWLEDGMENT

I am deeply grateful to my supervisors Drs.Giuliano Anto-
niol and Yann-Gaël Guéhéneuc for their guidance and support.

REFERENCES

[1] F. Deißenböck and M. Pizka, “Concise and consistent naming,” in Proc.
of the International Workshop on Program Comprehension (IWPC), May
2005.

[2] A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of comments
and identifier names on program comprehensibility: an experiential
study,” Journal of Program Languages, vol. 4, no. 3, pp. 143–167, 1996.

[3] B. Caprile and P. Tonella, “Nomen est omen: Analyzing the language
of function identifiers,” in Proc. of the Working Conference on Reverse
Engineering (WCRE), Atlanta Georgia USA, October 1999, pp. 112–
122.

[4] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier
names for comprehension and memory,” Innovations in Systems and
Software Engineering, vol. 3, no. 4, pp. 303–318, 2007.

[5] ——, “What’s in a name? a study of identifiers,” in Proceedings of 14th
IEEE International Conference on Program Comprehension. Athens,
Greece: IEEE CS Press, 2006, pp. 3–12.

[6] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. on Software Engineering, vol. 28, pp. 970–983, Oct 2002.

[7] J. I. Maletic, G. Antoniol, J. Cleland-Huang, and J. H. Hayes, “3rd
international workshop on traceability in emerging forms of software
engineering (tefse 2005).” in ASE, 2005, p. 462.

[8] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing.” in Proceedings of the
International Conference on Software Engineering, 2003, pp. 125–137.

[9] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual
cohesion of classes for fault prediction in object-oriented systems,” IEEE
Transactions on Software Engineering, vol. 34, no. 2, pp. 287–300, 2008.

[10] D. Poshyvanyk and A. Marcus, “The conceptual coupling metrics for
object-oriented systems,” in Proceedings of 22nd IEEE International
Conference on Software Maintenance. Philadelphia Pennsylvania USA:
IEEE CS Press, 2006, pp. 469 – 478.

[11] B. Caprile and P. Tonella, “Restructuring program identifier names,” in
Proc. of the International Conference on Software Maintenance (ICSM),
2000, pp. 97–107.

[12] E. Merlo, I. McAdam, and R. D. Mori, “Feed-forward and recurrent
neural networks for source code informal information analysis,” Journal
of Software Maintenance, vol. 15, no. 4, pp. 205–244, 2003.

[13] E. Enslen, E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Mining
source code to automatically split identifiers for software analysis,” in
Proceedings of the 6th International Working Conference on Mining
Software Repositories, MSR 2009, Vancouver, BC, Canada, May 16-17,
2009, 2009, pp. 71–80.

[14] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code
vocabulary,” in Proc. of the Working Conference on Reverse Engineering
(WCRE), 2010, pp. 112–122.

[15] D. Lawrie and D. Binkley, “Expanding identifiers to normalize source
code vocabulary,” in Proc. of the International Conference on Software
Maintenance (ICSM), 2011, pp. 113–122.

[16] L. Guerrouj, M. D. Penta, G. Antoniol, and Y. G. Guéhéneuc, “Tidier:
An identifier splitting approach using speech recognition techniques,”
Journal of Software Maintenance - Research and Practice, p. 31, 2011.

[17] L. Guerrouj, P.Galinier, Y. G. Guéhéneuc, G. Antoniol, and M. Di Penta,
“Tris: A fast and accurate identifiers splitting and expansion algorithm,”
in Proc. of the Working Conference on Reverse Engineering (WCRE),
Kingston, 2012, pp. 103–112.

[18] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better
identifier splitting techniques help feature location?” in Proc. of the
International Conference on Program Comprehension (ICPC), Kingston,
2011, pp. 11–20.

[19] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and looping
constructs: an empirical study,” Commun. ACM, vol. 26, no. 11, pp.
853–860, 1983.

[20] A. von Mayrhauser and A. M. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–
55, 1995.

[21] N. Anquetil and T. Lethbridge, “Assessing the relevance of identifier
names in a legacy software system,” in Proceedings of CASCON,
December 1998, pp. 213–222.

[22] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or
under score,” in The 17th IEEE International Conference on Program
Comprehension, ICPC 2009, Vancouver, British Columbia, Canada, May
17-19, 2009. IEEE Computer Society, 2009, pp. 158–167.

[23] M.-A. D. Storey, A Cognitive Framework For Describing And Evaluating
Software Exploration Tools. PhD thesis Simon Fraser University, 1998.

[24] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective develop-
ers investigate source code: An exploratory study.” IEEE Trans. Software
Eng., vol. 30, no. 12, pp. 889–903, 2004.

[25] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in SIGSOFT ’06/FSE-14: Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software
engineering. Portland, Oregon, USA: ACM Press, 2006, pp. 1–11.

[26] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, pp. 434–451, 2008.

1388

