
Recognizing Words from Source Code Identifiers
using Speech Recognition Techniques

Nioosha Madani∗, Latifa Guerrouj∗, Massimiliano Di Penta†, Yann-Gaël Guéhéneuc‡, Giuliano Antoniol∗
∗SOCCER Lab. – DGIGL, École Polytechnique de Montréal, Québec, Canada

†University of Sannio - Department of Engineering - Benevento - Italy
‡Ptidej Team – DGIGL, École Polytechnique de Montréal, Québec, Canada

{nioosha.madani,latifa.guerrouj,yann-gael.gueheneuc}@polymtl.ca,
dipenta@unisannio.it, antoniol@ieee.org

Abstract—The existing software engineering literature has
empirically shown that a proper choice of identifiers influences
software understandability and maintainability. Researchers
have noticed that identifiers are one of the most important
source of information about program entities and that the
semantic of identifiers guide the cognitive process.
Recognizing the words forming identifiers is not an easy

task when naming conventions (e.g., Camel Case) are not
used or strictly followed and–or when these words have been
abbreviated or otherwise transformed. This paper proposes a
technique inspired from speech recognition, i.e., dynamic time
warping, to split identifiers into component words.
The proposed technique has been applied to identifiers

extracted from two different applications: JHotDraw and Lynx.
Results compared to manually-built oracles and with Camel
Case algorithm are encouraging. In fact, they show that the
technique successfully recognizes words composing identifiers
(even when abbreviated) in about 90% of cases and that it
performs better than Camel Case. Furthermore, it was able to
spot mistakes in the manually-built oracle.

Keywords—Source code identifiers; program comprehension.

I. INTRODUCTION

One of the problems that developers face when under-
standing and maintaining a software system is that, very
often, documentation is scarce, outdated, or simply not
available. This problem is not limited to open source projects
but it is also true in industry: as systems evolve, documen-
tation is not updated due to time pressure and the need to
reduce costs. Consequently, the only up-to-date source of
information is the source code and therefore identifiers and
comments are key means to support developers during their
understanding and maintenance activities.

In their seminal work, Deißenböck and Pizka highlighted
that proper identifiers improve quality and that “it is the se-
mantics inherent to words that determine the comprehension
process” [1]. Indeed, according to Tonella and Caprile [2],
[3], the identifiers are one of the most important source of
information about system concepts.

Researchers have studied the usefulness of identifiers to
recover traceability links [4], [5], [6], measure conceptual
cohesion and coupling [7], [8], and, in general, as assets

that can highly affect source code understandability and
maintainability [9], [10], [11]. Researchers have also studied
the quality of source code comments and the use of com-
ments and identifiers by developers during understanding
and maintenance activities [11], [12], [13]. They all con-
cluded that identifiers can be useful if carefully chosen to
reflect the semantics and role of the named entities.

In the following, we will refer to any substring in a
compound identifier as a term, while an entry in a dictionary
(e.g., the English dictionary) will be referred to as a word. A
term may or may not be a dictionary word. A term carries
a single meaning in the context where it is used, while a
word may have multiple meanings (upper ontologies like
WordNet1 associate multiple meanings to words).

Stemming from Deißenböck and Pizka’s observation on
the relevance of words and terms in identifiers to drive
program comprehension several previous works attempted to
segment identifiers by splitting them into component terms
and words.

Indeed, identifiers are often composed of terms reflect-
ing domain concepts [11], referred to as “hard words”.
Hard words are usually concatenated to form compound
identifiers, using the Camel Case naming convention, e.g.,
drawRectangle, or underscore, e.g., draw rectangle. Some-
times, no Camel Case convention or other separator (e.g.,
underscore) is used. Also, acronyms and abbreviations may
be part of any identifier, e.g., drawrect or pntrapplicationgid.
The component words draw, application, the abbreviations
rect, pntr, and the acronym gid (i.e., group identifier) are
referred to as “soft-words” [14].

To the best of our knowledge, two families of approaches
exist to split compound identifiers: the simplest one assumes
the use of the Camel Case naming convention or the pres-
ence of an explicit separator. The more complex strategy is
implemented by the Samurai tool and it relies on a lexicon
and uses greedy algorithms to identify component words.
Samurai [15] is a technique and a tool that assumes that
an identifier is composed of words used (alone) in some

1http://wordnet.princeton.edu

2010 14th European Conference on Software Maintenance and Reengineering

1534-5351/10 $26.00 © 2010 IEEE

DOI 10.1109/CSMR.2010.31

68

other parts of the system. It therefore uses words and word
frequencies, mined from the source code, to determine likely
splittings of identifiers.

However, the above mentioned approaches have limita-
tions. First, they are not always able to associate identifier
substrings to words or terms, e.g., domain-specific terms
or English words, which could be useful to understand the
extent to which the source code terms reflect terms in high-
level artifacts [16]. Second, they do not deal with word
transformations, e.g., abbreviation of pointer into pntr.

This paper proposes a novel approach to segment iden-
tifiers into composing words and terms. The approach is
based on a modified version of the Dynamic Time Warping
(DTW) algorithm proposed by Ney for connected speech
recognition [17] (i.e., for recognizing sequences of words in
a speech signal) and on the Levenshtein string edit-distance
[18]. The approach further assumes that there is a limited set
of (implicit and–or explicit) rules applied by developers to
create identifiers. It uses words transformation rules, plus a
hill climbing algorithm [19] to deal with word abbreviation
and transformation.

The main contributions of this paper are the following:
1) A new approach to split identifiers, inspired from

speech recognition. The approach overcomes limita-
tions of previous approaches and can split identifiers
composed of transformed words, regardless of the kind
of separators;

2) Evidence that the approach can be used to map
transformed words composing identifiers to dictionary
words and, therefore, to build a thesaurus of the
identifiers;

3) Results of applying our approach two software sys-
tems belonging to different domains, JHotDraw (writ-
ten in Java) and Lynx (written in C). Results based on
manually-built oracles indicate that the approach can
correctly split up to 96% of the identifiers and can
even be used to identify errors in the oracle.

This paper is organized as follows. Section II describes
the novel approach to split identifiers, also reporting a primer
on Ney’s connected-words recognition algorithm [17]. Sec-
tion III reports an empirical study aimed at evaluating the
proposed approach. Section IV relates this work to the
existing literature. Finally, Section V concludes the paper
and outlines future work.

II. THE IDENTIFIER SPLITTING APPROACH

Often programmers build new identifiers by applying a
set of transformation rules to words, such as dropping all
vowels (e.g., pointer becomes pntr), or dropping one or more
characters (e.g., pntr becomes ptr).

Our goal is to provide a meaning to simple and composed
identifiers, even in presence of such truncated/abbreviated
words, e.g., objectPrt, cntr or drawrect, by associating
identifier (substrings) to terms and words; words belonging

X

Y
D(N,M)

Figure 1. Dynamic Time Warping (DTW) of two time signals.

to either a full English dictionary or to a domain-specific or
an application-specific dictionary.

This section describes the approach for identifying terms
and words in source code identifiers. The approach takes as
input two artifacts (i) the set of identifiers to be segmented
into words and terms and (ii) a dictionary containing words
and terms belonging to an upper ontology, to the application
domain, or both.

Examples of dictionaries that can be used for our purpose
are, for example, WordNet (which contains around 90,000
entries) or dictionaries used by spell checkers, such as a-spell
(which contains around 35,000 English words in a typical
configuration). Each dictionary word may be associated to a
set of known abbreviations in a way similar to a thesaurus.
For example, the pointer entry in the dictionary can be
associated to abbreviations pntr, ptr found as terms com-
posing identifiers. Thus, if pntr is matched, the algorithm
can expand it into the dictionary term pointer. The overall
idea is to identify near optimal matching between substrings
in identifiers and words in the dictionary, using an approach
inspired by speech recognition.

A. Dynamic Programming Algorithm for Identifier Splitting

Identifier splitting is performed via an adaptation of the
connected speech recognition algorithm proposed by Ney
[17] that, in turns, extends to connected words the isolated
word DTW [20] algorithm. DTW was conceived for time
series alignment and was widely applied in early speech
recognition applications in the 70s and 80s.

As shown in Figure 1, given two signals, two vectors of
features, i.e., coefficients extracted from two utterances, the
algorithm determines an alignment between the two vectors
of features.

69

Let x1, x2, . . . , xN be the input feature vector extracted
from an unknown utterance (x axis) and y1, y2, . . . , yM a
feature vector in a dictionary of signals (y axis) a DTW
algorithm performs a warping of the time axis x and y to
find the optimal match between the two vectors and, thus,
the closest match of the unknown input utterance with pre-
recorded dictionary entries.

To compute the optimal matching given two time series
(or strings) x1, x2, . . . , xN and y1, y2, . . . , yM , the DTW
distance D(N, M) is recursively computed. Let d(xi, yj) be
a local distance chosen depending on the problem at hand.
In speech recognition, such a distance is often the Euclidean
distance between feature vectors; for strings, it can be the
ordinal distance of characters or just the comparison of
the two characters at position i and j [21]. Then, for any
intermediate point D(i, j):

c(i, j) = d(xi, yj)

D(i, j) = min[w1 ·D(i− 1, j) + c(i, j) , // insertion

w2 ·D(i, j − 1) + c(i, j) , // deletion

D(i− 1, j − 1) + w3c(i, j)] // match

The recurring equation computes the current distance
based on previous values and thus it imposes continuity
constraints. Weights w1, w2, w3 are problem-dependent, typ-
ically w1 is chosen equal to w2, so that the computed
distance is symmetric; w3 is often chosen to be twice the
value of w1 and w2. In string matching, if xi differs from
yj , then it corresponds to a substitution that is equivalent to
the deletion of one character followed by one insertion. In
our computation, we choose w1 = w2 = 1 and w3 = 2, as
in the classic Levenshtein string edit distance [18].

The computation is done as follows. It uses a grid built
by putting an identifier on the x-axis and some dictionary
words on the y-axis, as shown in Figure 2. It starts on the
bottom-left side of the grid and is performed by computing
a distance D(i, j) based on d(xi, yj) for each cell of the
grid, i.e., by comparing the corresponding elements on the
x and y axis (which are portions of the signal in speech
recognition, while they are characters in our application)
and finding the local path of minimum cost, i.e., (i− 1, j),
(i, j − 1), or (i − 1, j − 1). The computation proceeds by
columns (or rows); once the cost matrix D(i, j) has been
filled, the cell D(N, M) contains the minimum alignment
cost, i.e., the minimum distance between x1, x2, . . . , xN and
y1, y2, . . . , yM . Backtracking from (N, M) down to (0, 0)
recovers the warping path corresponding to the optimal
alignment of x1, x2, . . . , xN and y1, y2, . . . , yM .

Given a dictionary containing the words rotate and shape,
the identifier rotateShape would best match with the words
rotate and shape. The identifier splitting problem can thus
be brought back to the problem of determining the sequence
of R words q(1), . . . , q(R), where q(i) represents a word
in a given dictionary, such that the distance between the

U s e r C o u n t e r P t r

C
 o

 u
 n

 t
e

r
U

 s
e

r
P

t r W3

W2

W1

Figure 2. Connected word recognition (from [17]).

input identifier and the sequence of word is minimized.
Figure 2 graphically represents this problem, where the
x axis represents an identifier (composed of one or more
words) and on y axis are entries of a reference dictionary.
In Figure 2, the dictionary contains three words Counter,
User, and Ptr, while the input identifier is UserCounterPtr
(our approach is case insensitive).

The warping problem can be thought as having multi-
ple instances of the problem represented in Figure 1, one
instance for each dictionary entry as shown in Figure 2,
where at each column end, e.g., column i, each word in the
dictionary can start at the next position i+1. In other words,
the algorithm performs a warping of each word and then
identifies an optimal path among these warpings (represented
by dashed arrows in Figure 2) to match the signal.

Further details about the matching algorithm can be found
in [17]. The main difference between what is done in
speech recognition and what we do in our context is in the
used distance. In speech recognition, the distance adopted
depends of the speech representation and it is usually an
Euclidean, a Cepstral, or an Itakura–Saito distance. In our
context, a comparison between characters of strings needs
to be performed and thus d(xi, yj) is the result of the
comparison of characters xi and yj .

B. Word Transformation Rules
Some identifier substrings may not be part of the dictio-

nary and need to be either generated from existing dictionary
entries or added to it. Moreover, several words may have the
same (minimum) distance from the substring to be matched
when matching a substring of the identifier to the dictionary

70

words to determine which word has the minimum distance
from the substring and, thus, must be chosen, as shown in
Figure 2.

Let us consider the identifier fileLen and suppose that
the dictionary contains the words length, file, lender, and
ladder. Clearly, the word file matches with zero distance the
first four characters of fileLen, while both length and lender
have a distance of three from len, because their last three
characters could be dropped. Finally, the distance of ladder
to len is higher than that of other words because only l
matches. Thus, both length and lender should be preferred
over ladder to generate the missing dictionary entry len.

To choose the most suitable word to be transformed, we
use the following simple heuristic. We select the closest
words, with non-zero distance, to the substring to be matched
and repeatedly transform them using transformation rules
chosen randomly among six possible rules. This process
continues until a transformed word matches the substring
being compared or when transformed words reach a length
shorter than or equal to three characters. The available
transformation rules are the following:
• Delete all vowels: All vowels contained in the dictio-

nary word are deleted, e.g., pointer → pntr;
• Delete Suffix: suffixes—such as ing, tion, ed, ment,
able—are removed from the word, e.g., improvement
→ improve;

• Keeping the first n characters only: the word is trans-
formed by keeping the first n characters only, e.g.,
rectangle → rect for n = 4;

• Delete a random vowel: one randomly chosen vowel
from the word is deleted, e.g., number → numbr;

• Delete a random character: i.e., one randomly-chosen
character is omitted, e.g., pntr → ptr.

The transformations are applied in the context of a hill-
climbing search. DTW, word transformation rules, and hill
climbing are the key components of our identifier segmen-
tation algorithm, which works as follows:

1) Based on the current dictionary, we (i) split the
identifier using DTW—as explained in Section II-A,
(ii) compute the global minimum distance between
the input identifier and all words contained in the
dictionary, (iii) associate to each dictionary word a
fitness value based on its distance computed in step
(ii). If the minimum global distance in step (ii) is zero,
the process terminates successfully; else

2) From dictionary entries with non-zero distance ob-
tained at step (1), we randomly select one word having
minimum distance and then:

a) We randomly select one transformation not vi-
olating transformation constraints, apply it to
the word, and add the transformed word to a
temporary dictionary;

b) We split the identifier via DTW and the tempo-

rary dictionary and compute the minimum global
distance. If the added transformed word reduces
the global distance, then we add it to the current
dictionary and go to step (1); else

c) If there are still applicable transformations, and
the string produced in step (a) is longer then three
characters, we go to step (a);

3) If the global distance is non-zero and the iteration limit
was not reached, then, we go to step (1), otherwise we
exit with failure.

These previous steps describe a hill climbing algorithm,
in which a transformed word is added to the dictionary
if and only if it reduces the global distance. Briefly, a
hill climbing algorithm [19] searches for a (near) optimal
solution of a problem by moving from the current solution
to a randomly chosen, nearby one, and accepts this solution
only if it improves the problem fitness (the distance in our
case). The algorithm terminates when there is no moves
to nearby solutions improving the fitness. Differently from
traditional hill climbing algorithms, in steps (a) and (b),
our algorithm attempts to explore as much as possible of
neighboring solutions by performing word transformations.
Different neighbors can be explored depending on the order
of transformations.

C. (Dis)Advantages of Applying DTW for Identifier Splitting

The usage of techniques inspired from speech recognition
is not the only way of splitting identifiers into words. Clearly,
when Camel Case separators (or other separators, such as the
underscore) are being used, there is no need for complex
splitting techniques. However:
• In some situations, the Camel Case separator or other

explicit separators are not used, thus other approaches
must be used. A possible alternative approach is the
one by Enslen et al. [15];

• The DTW algorithm is able to provide a distance
between an identifier and a set of words in a dictionary
even if there is no perfect match between substrings in
the identifier and dictionary words; for example, when
identifiers are composed of abbreviations, e.g., getPntr,
filelen, or DrawRect. It accepts a match by identifying
the dictionary words closest to identifier substrings;

• The DTW algorithm is able to perform an alignment
when matching words from the dictionary, thus it is
able to work even when the word to be matched is
preceded or followed by other characters, e.g., xpntr;
thus, it is better than, for example, applying only the
Levenshtein edit distance.

• The DTW algorithm assigns a distance to matched sub-
strings. Thus, in the above fileLen example, we would
discover that file matches the first four characters with
a zero distance (thus distance = 0) and that length
matches the five to seven characters (at distance = 3);

71

• The dictionary can be sorted so that the approach
favors the matching of the longest words, with respect
to multiple words composing the longest one. Thus,
the identifier copyright would be matched to the word
copyright rather than to the composition of words copy
and right, which also belong to the dictionary.

DTW is a powerful technique, however it has also
some disadvantages. The first disadvantage is the intrinsic
quadratic complexity of a single match with a cubic cost
when we consider a dictionary. Furthermore, sentence syntax
and semantics are not involved as matching is done at the
character level. Going back to the fileLen example, length
should be preferred over lender, however DTW cannot
choose between the two. Finally, developers are able to
disambiguate complex situations leading to optimal non-zero
distance split when DTW cannot. Consider the identifier
imagEdges; it is immediate to recognize the component
words image and edges. However, image and edges match
the identifier with a distance of 1 because the E character is
shared by both terms in the identifier and, thus, the optimal
minimum cost is 1 and not 0.

Our approach deals with similar disadvantages by trans-
forming words and running multiple times the DTW al-
gorithm to build multiple candidate splittings. Clearly, any
developer would use syntax and semantics as well as her
knowledge of the domain and context implicitly: even if
imag is not a well-formed English word, she will correctly
split imagEdges into image and edges.

III. EMPIRICAL STUDY

The goal of this study is to analyze the proposed iden-
tifier splitting approach, with the purpose of evaluating its
ability to adequately identify dictionary words composing
identifiers, even in presence of word transformations. The
quality focus is the precision and recall of the approach when
identifying words composing the identifiers with respect to
a manually-built oracles. The perspective is of researchers,
who want to evaluate an approach for identifier splitting,
that can be used as a means to assess the quality of source
code identifiers, i.e., the extent to which they would refer
to domain words or in general to meaningful words, e.g.,
words belonging to a requirements’ dictionary.

The context consists of a dictionary and identifiers ex-
tracted from the source code of two software systems,
JHotDraw and Lynx. The dictionary contains about 2,500
words extracted from a glossary found on the Internet2,
500 most frequent English words3, plus terms and words
contained in Lynx and JHotDraw.
JHotDraw4 is a Java framework for drawing 2D graphics.

The project started in October 2000 with the main purpose

2http://www.matisse.net/files/glossary.html
3http://www.world-english.org/
4http://www.jhotdraw.org

Table I
MAIN CHARACTERISTICS OF THE TWO ANALYZED SYSTEMS.

Metrics JHotDraw Lynx
Analyzed Releases 5.1 2.8.5
Files 155 247
KLOCs 16 174
Identifiers (> 2 chars) 2,348 12,194

of illustrating the use of design patterns in a real context.
Lynx5 is known as “the textual Web browser”, i.e.,, it is a
free, open-source, text-only Web browser and Gopher client
for use on cursor-addressable, character cell terminals. Lynx
is entirely written in C. Its development began in 1992 and
it is now available on several platforms, including Linux,
UNIX, and Windows. Table I reports some relevant figures
about the two systems that we analyzed.

A. Research Questions
The study reported in this section aims at addressing the

following research questions:
1) RQ1: What is the percentage of identifiers correctly
split by the proposed approach? This research question
investigates the overall performance of our approach,
comparing the results with a manually-built oracle.

2) RQ2: How does the proposed approach perform com-
pared with the Camel Case splitter? This research
question compares the performance of the proposed
approach with the simple Camel Case splitter, specifi-
cally the capability of correctly splitting identifiers and
of mapping substrings to dictionary words.

3) RQ3: What percentage of identifiers containing word
abbreviations is the approach able to map to dic-
tionary words? This research question evaluates the
ability of the proposed approach to map identifier
substrings to dictionary words when these substrings
represent abbreviations of dictionary words.

B. Analysis Method
The above research questions aim at understanding if the

proposed approach helps in decomposing identifiers. Thus,
we implicitly assume that, given an identifier, there exists
an exact subdivision of this identifier into terms and words
that, possibly after transformations and once concatenated,
compose the identifier. First, we limited our analysis to
identifiers longer than or equal to three characters: 2,348
in JHotDraw and 12,194 in Lynx. We have explicitly split
identifiers containing digits, e.g., name4Tag into name and
tag and sent2user into sent and user, because our approach
cannot map 2 to the word to and 4 to for, which are the
intended meanings of these terms.

To evaluate our approach, we selected the 957 JHotDraw
and 3,085 Lynx composed identifiers for which it was

5http://lynx.isc.org/

72

possible to define a segmentation. We excluded from our
analysis identifiers that were composed of one single English
word, and identifiers for which it was not possible to clearly
identify a splitting into dictionary words and an expansion
of abbreviations. Examples of identifiers belonging to such
a category are some identifiers extracted from Lynx source
code, e.g., gieszczykiewicz, hmmm, ixoth, pqrstuvwxyz, or
tiocgwinsz. The 957 (3,085, respectively) identifiers were
manually segmented into composing substring mapped into
words and terms, thus, creating oracles for JHotDraw and
for Lynx.
RQ1 aims at answering a preliminary research question

about the applicability and usefulness of the proposed ap-
proach. To answer RQ1, we followed a two-steps approach.
First, we executed the proposed algorithm in a single
iteration mode and with no transformations. Thus, only
identifiers composed of dictionary words are split with zero
distance. Not-split identifiers, i.e., with splitting distance
not equal to zero, were fed into the second phase. In
the second phase, we applied our approach with an upper
bound of 20,000 iterations, i.e., 20,000 dictionary word
transformations and DTW splits. We chose 20,000 iterations
as we noticed that after such a number of iterations, the
approach was almost always able to find a splitting in a
reasonable time, i.e., within 2 minutes with our dictionary
composed of 3,000 words. After automatic splitting have
been performed, results are compared against the oracle, to
compute the percentage of correctly segmented identifiers.

In phase two, we only included those identifiers that
were not split in phase one and for which the composing
substrings were longer than or equal to three characters,
as shorter substrings were conservatively considered as
spurious characters, pre-/post-fix or errors, thus penalizing
our approach. Also, matching such short identifiers by
performing transformations of dictionary words would not
be feasible as too many dictionary words, after a sequence
of transformations, would match the (short) substrings. For
example, in the identifier fpointer the character f can be
generated by any dictionary words containing the letter f.
Much in the same way, the substring ly in Lynx identifiers
such as lysize can be expanded to several different words.
RQ2 aims at performing a comparison of the proposed

approach with the Camel Case splitting approach. We imple-
mented a basic Camel Case identifier splitting algorithm and
compared its results with the manually-built oracle. To sta-
tistically compare percentage of correct splittings performed
by the proposed approach with those of the Camel Case
splitter, we use Fisher’s exact test [22] and tested the null
hypothesis H0: the proportions of correct splittings obtained
by the two approaches are not significantly different.

To quantify the effect size of the difference between the
two approaches, we also computed the odds ratio (OR) [22]
indicating the likelihood of an event to occur, defined as the
ratio of the odds p of an event occurring in one sample, i.e.,

Table II
PERCENTAGE OF CORRECT CLASSIFICATIONS (RQ1).

Systems Identifiers Exact Splittings ErrorsSingle Iteration Multiple Iterations
JHotDraw 957 891 (93%) 920 (96%) 37
Lynx 3,085 2,169 (70%) 2,901 (94%) 217

the percentage of identifiers correctly split by our approach
(experimental group), to the odds q of it occurring in the
other sample, i.e., the percentage of identifiers correctly split
by the Camel Case splitter (control group): OR = p/(1−p)

q/(1−q) .
An odds ratio of 1 indicates that the event is equally likely
in both samples. OR > 1 indicates that the event is more
likely in the first sample (proposed approach) while an OR
< 1 indicates the opposite (Camel Case splitter).
RQ3 aims at assessing the ability of our approach to find

identifiers splittings when component substrings are obtained
by means of dictionary word transformations, such as in
rectpntr using pntr instead of pointer and rect in place of
rectangle. RQ3 is addressed similarly to RQ1, comparing
identifiers matched in phase two (as explained for RQ1) with
the subset of the identifiers in the oracle that, according to
our manual classification, contained abbreviations.

C. Study Results
This section reports results of the empirical study with

the objective of addressing our research questions.
1) RQ1: What is the percentage of identifiers correctly

split by the proposed approach?: Table II reports for JHot-
Draw and Lynx the results of the identifier splittings obtained
with our approach. In particular, the third column reports the
number of identifiers exactly split in a single step, i.e., with
DTW distance zero and matching the oracle. Results indicate
that, for both systems, a large percentage of identifiers have
been created via simple concatenations of dictionary words.
In fact, 93% of JHotDraw identifiers, and 70% of Lynx
identifiers have been exactly split into dictionary words
within a single iteration of our algorithm.

The fourth column cumulates results of the third columns
with the number of composed identifiers made of dictionary
words abbreviations split with zero distance within 20,000
iterations. In other words, the fourth columns shows the
numbers and percentages of all the correctly-split identifiers.
Finally, the fifth column shows the number of identifiers that
were not exactly split or for which the splitting did not match
the oracle.

Wrong splittings were due to identifiers containing
acronyms or short abbreviations. For example, we believe
that it is impossible to identify correctly component words
of the acronyms such as afaik, imho, or foobar. For different
reasons, we also believe that it is impossible to find the exact
splittings of identifiers such as fsize; even if we consider
that the context of the identifiers fsize could be reasonably
associated with both concepts of file size and figure size

73

Table III
PERFORMANCE OF THE CAMEL CASE SPLITTER.

Systems Correct Splitings Errors
JHotDraw 874 83
Lynx 561 2,524

depending on the JHotDraw code region where it is used,
even though the letter f really means that the field is private.

Overall, about 96% of JHotDraw identifiers and 93%
of Lynx identifiers were correctly segmented with zero
distance. These results support our claim and conclusion
that a very large fraction (above 90%) of identifiers can be
exactly split by using our approach (RQ1).
2) RQ2: How does our approach compares to the Camel

Case splitter?: Table III summarizes results of Camel Case
splitting. Not surprisingly, the Camel Case approach works
well on JHotDraw. Indeed, Java coding guidelines and
identifier construction rules tend to promote Camel Case
splitting and JHotDraw developers carefully followed coding
standards and identifier creation rules. As the second line of
the same table shows, this is not the case of Lynx, the C
Web browser. Indeed, C coding standards such as the Indian
Hill6 coding standards or the GNU coding standards7 do not
enforce Camel casing.

When comparing the performances of the proposed ap-
proach (see Table II, considering results after the second
phase, i.e., the third column) with those of the Camel Case
splitting (see Table III), the Fisher’s exact test indicated
no significant (or marginal) difference for JHotDraw (p-
value = 0.1) with a OR = 1.3, i.e., the proposed approach
has chances of correctly splitting an identifier 1.3 more
times than the Camel Case splitter. For Lynx, differences
are statistically significant (p-value < 0.001) and we have
an extremely high OR=60, i.e., chances of our approach to
correctly split identifiers are 60 times higher than the Camel
Case splitter.

Therefore, we conclude that the proposed approach per-
forms better than Camel Case splitter on both systems and
significantly better on Lynx (RQ2).
3) RQ3: What percentage of identifiers containing word

abbreviations is the approach able to map to dictionary
words?: Table II and IV reports results aimed at addressing
RQ3. The fourth and fifth columns of Table II show that
a substantial fraction of identifiers containing abbreviations
can be split into dictionary words that originate such abbre-
viations. More precisely, 44% and 70% of JHotDraw and
Lynx identifiers containing abbreviations were correctly split
into component words. The percentage of success for the two
systems is quite different and the reason is the different ways
in which identifiers have been composed. Indeed, in Lynx,
very short prefixes are much more frequent and cryptic than

6http://www.chris-lott.org/resources/cstyle/
7http://www.gnu.org/prep/standards/

in JHotDraw. In particular, Lynx prefixes, such as ly, ht,
or hta, make it hard to produce correct splittings without a
specialized dictionary in which such prefixes are added with,
possibly, the proper expansion.

D. Discussion

The proposed approach has a non-deterministic aspect in
the way word transformation rules are applied and in the way
in which the candidate words to be transformed are selected.
Consequently, different runs of the approach may lead to
different identifier splittings. Table IV reports for a subset
of JHotDraw identifiers the splittings obtained in ten runs,
each run with an upper limit of 20,000 iterations. The lower
part of the table shows identifiers wrongly segmented and for
which the zero distance was never achieved. It also shows
in the last column the splittings computed. Two phenomena
can be observed. First, because the word red is part of the
dictionary, the identifier writeref is split into write red with
distance 1; 1 is also the minimum distance and, thus, red is
always preferred over reference. This fact suggests the need
for improving the heuristic to select the candidate word to
be used in splitting an identifier as any word shorter than
reference with the current simple heuristic (based on the
matching distance) is preferred.

We believe that for words such as selectionzordered,
jhotdraw, getvadjustable, fimagewidth and fimageheight, it
would be impossible to compute the correct splitting and
identify originating words. For example, in our dictionary
the character f is contained in about 300 words, each of
these words could generate f in fimageheight. We believe
that a substantial reduction of the search space is needed
to match single characters, for example, by coupling our
algorithm with the approach of Enslen et al. [15], which
would restrict the search to the dictionary words containing
f to the words used in the same method, class, or package.
Finally, serialversionuid suffers of the problem of acronym
expansion mentioned above. We believe that the dictionary
should also be expanded with well-known acronyms, such
as afaik, and with technical abbreviations, such as uid, gid,
smtp. In general, the dictionary should contain as many
words belonging to the application domain as possible. Re-
quirement documents and user manuals are precious sources
of such words.

The upper part of Table IV shows another limitation of the
proposed approach. Sometimes, different component words
are discovered in different runs. For example, the identifier
newlen was split in two different ways: new length and new
lender. Clearly, the latter splitting is semantically wrong:
even if lender can generate len, in the (intended) context of
newlen, the term lender is nonsensical. We believe that the
heuristic choosing the words to be transformed needs to be
improved, possibly by relying on the strategy derived from
[15], i.e., favoring words already used in the same context.

74

Table IV
JHOTDRAW: RESULTS AND STATISTICS FOR SELECTED IDENTIFIERS IN TEN SPLITS ATTEMPTS. 25%, 50% AND 75% INDICATE THE FIRST, SECOND

(MEDIAN), AND THIRD QUARTILES OF THE RESULTS DISTRIBUTION RESPECTIVELY.

Identifiers Successes Min. 25 % 50 % 75 % Max. Split I Split II
borddec yes 208 617 1,346 1,938 8,831 bord decimal bord decision
anchorlen yes 154 689 1,220 3,097 7,056 anchor length anchor lender
drawrect yes 29 779 2,385 4,877 8,629 draw rectangle
drawroundrect yes 77 6,509 10,300 17,403 19,173 draw round rectangle
fillrect yes 898 3,549 5,942 10,932 12,659 fill rectangle
javadrawapp yes 86 480 972 4,582 6,965 java draw apply java draw append
netapp yes 76 788 1,529 4,183 7,394 net apply net append
newlen yes 176 534 600 704 2,503 new length new lender
nothingapp yes 90 305 1,425 4,803 9,956 nothing apply nothing application
addcolumninfo yes 457 1,296 1,806 2,631 4,146 add column information add column inform
addlbl yes 43 793 1,130 3,498 4,843 add label
casecomp yes 124 327 437 938 1,836 case compare case complete
serialversionuid No serial version did
selectionzordered No selection ordered
removefrfigurerequestremove No remove figure request remove
jhotdraw No hot draw
getvadjustable No get bad just able
fimagewidth No him age width
fimageheight No him age height
writeref No write red

Finally, it is important to remark that building an oracle
for this kind of approach is a difficult and challenging task.
Each composed identifier must be split in component words
and abbreviations expanded into English words. We have
experienced that the task is non trivial: we discovered eight
mistakes in the initial JHotDraw oracle, while assessing our
approach output and similar errors also occurred in the first
version of the Lynx oracle (both oracles were fixed after
such runs and the corrected ones were used to produce the
results reported in this paper).

E. Threats to Validity

Threats to construct validity concern the relation between
the theory and the observation. Here, this threat is mainly
due to mistakes in the oracles. Indeed, we cannot exclude
that errors are still present in the oracles, despite the correc-
tions made and explained above. However, the discovered
errors were less than 1% of the number of identifiers
contained in the oracles, thus the presence of some errors
would not greatly affect our results. Nevertheless, as the
intent of the oracles is to explain identifiers semantics, we
cannot exclude that a part of identifiers could have been
split in different ways by the developers that originally
created them. This problem is somehow related to guessing
the developers’ intent and we can only hope that, given
the application domain, the class, file, method, or function
containing the identifiers (and the general information that
can be extracted from the source code and documentation), it
will be possible to infer the developers’ likely intent. We are
working on improving our oracle and increasing the number
of manually-split identifiers.

Threats to internal validity concern any confounding
factor that could influence our results. In particular, these
threats can be due to subjectiveness during the manual

building of the oracles. We attempted to avoid any bias in the
oracles by using the same oracles and simple string matching
when comparing Camel Case splitter with our approach.
Furthermore, both oracles were built by the same researcher
and manually verified by other two people. Whenever a
disagreement was detected, a majority vote was taken. The
size of the oracle was chosen large enough to ensure that
even an error of a few percent in splits would not have
affected algorithm comparison.

Threats to Conclusion validity concern the relationship
between the treatment and the outcome. Identifiers split
exactly into dictionary words in a single iteration may
sometime be split in a different way from the developers’
intent. However, we do not claim any relation between the
splitting produced and the semantics of the identifiers; this
relation is left to the developers’ judgment and experience.
We limit ourselves to comparing our approach with the
Camel Case splitter and validating the quality of computed
splittings with respect to the oracles. Conclusion validity
may play a role when we compared the effectiveness in
detecting word abbreviations. To limit such a threat, we
manually inspected all splittings produced with multiple
iterations and word transformations.

Threats to external validity concern the possibility of
generalizing our results. The study is limited to two systems:
JHotDraw and Lynx. Yet, our approach is applicable to any
other system. However, we cannot claim that similar results
would be obtained with other systems. We have compared
our approach with a Camel Case splitter but cannot be sure
that their relative performances would remain the same on
different systems. However, the two systems correspond to
different domains and applications, have different sizes, are
developed by different teams, with different programming
languages. We believe this choice mitigates the threats to

75

the external validity of our study.

IV. RELATED WORK

The paramount role of program identifiers in program
understanding, traceability recovery, feature and concept
location tasks motivate the large body of relevant work in
this area. In the following, we focus on the most relevant
contributions given the focus of our research.

Identifier and program understanding has been investi-
gated in [1], [2], [23], [24]. Other work [3], [4], [11],
[25] attempted to investigate the information carried by
the words composing identifiers, their syntactic structure
and quality. The existence of “hard words” that encode
core concepts into identifiers was the main outcome of the
study by Anquetil et al. [23]. An in-depth analysis of the
internal identifier structure was conducted by Caprile et
al. [2], while guidelines for the production of high-quality
identifiers have been provided by Deißenböck et al. [1].
Methods related to identifier refactoring were proposed by
Caprile et al. [3] and Demeyer et al. [26]. Lawrie et al. [11]
performed an empirical study to assess the quality of source
code identifiers. The results of their study with over 100
programmers indicate that full words as well as recognizable
abbreviations lead to better comprehension.

Some studies [4], [5], [6] report how identifiers can be
used to recover traceability links. De Lucia et al. [16]
proposed COCONUT, a tool highlighting to developers the
similarity between source code identifiers and comments and
words in high-level artifacts. They showed that this tool
is helpful to improve the overall quality of identifiers and
comments. Merlo et al. [25] analyzed informal information
including identifiers and comments in programs.

The role of identifiers in mapping the domain model into
the program model (i.e., programming entities) was studied
by Takang et al. [24]. A crucial role is recognized to the
program lexicon and the coding standards in the so-called
naturalization process of software immigrants [27].

Overall, the above previous work highlights the im-
portance of properly-choosing identifiers for source code
comprehensibility and maintainability. In this context, the
application of our approach would be to map terms in source
code identifiers to domain dictionary words to better assess
the quality of these identifiers.

Many commonalities can be found with the work of En-
slen et al. [15]. We share with them the goal of automatically
splitting identifiers into component words. However, our
approach is different. We do not assume the presence of
Camel Casing nor of a set of known prefixes or suffixes. In
addition, our approach automatically generates a thesaurus
of abbreviations via transformations attempting to mimic the
cognitive processes of developers when composing identi-
fiers with abbreviated forms.

V. CONCLUSION

The proper choice of identifiers can help in promoting
software understanding and thus software evolution. Often,
identifiers are created by concatenating English terms and–or
acronyms and abbreviated form of words identifying domain
concepts. Recognizing terms composing identifiers is a non-
trivial task when concatenation does not follow Camel Case
rules or when abbreviations are used.

In this paper, we presented an algorithm inspired by Ney’s
extension of the Dynamic Time Warping (DTW) algorithm
to split identifiers into component words. We coupled the
DTW extension with transformation rules and hill climbing
to infer a segmentation in identifiers composed of dictionary
words and also of word abbreviations.

We applied our approach to split the identifiers of two
systems, developed with different programming languages,
and belonging to different application domains: JHotDraw
and Lynx. Results have been evaluated comparing the ob-
tained splittings with manually-built oracles. They showed
that the proposed approach outperforms a simple Camel
Case splitter. In particular, for Lynx, the Camel Case splitter
was able to correctly split only about 18% of the identifiers
versus 93% with our approach. On JHotDraw, the Camel
Case splitter exhibited a correctness of 91% while our
approach ensured 96% of correct results. Our approach was
also able to map abbreviations to dictionary words, in 44%
and 70% of cases for JHotDraw and Lynx, respectively.

Future work will be devoted to extend the evaluation of
our approach to other systems and to introduce enhanced
heuristics for term selection and word transformations, with
the aim of improving the current performances.

VI. ACKNOWLEDGEMENTS

This research was partially supported by the Natural
Sciences and Engineering Research Council of Canada (Re-
search Chair in Software Evolution #950-202658) and by G.
Antoniol Individual Discovery Grant.

REFERENCES

[1] F. Deißenböck and M. Pizka, “Concise and consistent nam-
ing,” in Proc. of the International Workshop on Program
Comprehension (IWPC), May 2005.

[2] B. Caprile and P. Tonella, “Nomen est omen: Analyzing the
language of function identifiers,” in Proc. of the Working
Conference on Reverse Engineering (WCRE), Atlanta Georgia
USA, October 1999, pp. 112–122.

[3] ——, “Restructuring program identifier names,” in Proc.
of the International Conference on Software Maintenance
(ICSM), 2000, pp. 97–107.

[4] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, “Recovering traceability links between code and
documentation,” IEEE Transactions on Software Engineering,
vol. 28, pp. 970–983, Oct 2002.

76

[5] J. I. Maletic, G. Antoniol, J. Cleland-Huang, and J. H. Hayes,
“3rd international workshop on traceability in emerging forms
of software engineering (tefse 2005).” in ASE, 2005, p. 462.

[6] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing.”
in Proceedings of the International Conference on Software
Engineering, 2003, pp. 125–137.

[7] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the con-
ceptual cohesion of classes for fault prediction in object-
oriented systems,” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 2, pp. 287–300, 2008.

[8] D. Poshyvanyk and A. Marcus, “The conceptual coupling
metrics for object-oriented systems,” in Proceedings of 22nd
IEEE International Conference on Software Maintenance.
Philadelphia, Pennsylvania, USA: IEEE CS Press, 2006, pp.
469 – 478.

[9] A. Takang, P. Grubb, and R. Macredie, “The effects of com-
ments and identifier names on program comprehensibility: an
experiential study,” Journal of Program Languages, vol. 4,
no. 3, pp. 143–167, 1996.

[10] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective
identifier names for comprehension and memory,” Innovations
in Systems and Software Engineering, vol. 3, no. 4, pp. 303–
318, 2007.

[11] D. Lawrie, C. Morrel, H. Feild, and D. Binkley, “What’s in
a name? a study of identifiers,” in Proc. of the International
Conference on Program Comprehension (ICPC), 2006, pp.
3–12.

[12] B. Fluri, M. Würsch, and H. Gall, “Do code and comments
co-evolve? on the relation between source code and comment
changes,” in 14th Working Conference on Reverse Engineer-
ing (WCRE 2007), 2007, pp. 70–79.

[13] Z. M. Jiang and A. E. Hassan, “Examining the evolution of
code comments in PostgreSQL,” in Proceedings of the 2006
International Workshop on Mining Software Repositories,
MSR 2006, 2006, pp. 179–180.

[14] D. Lawrie, H. Feild, and D. Binkley, “Syntactic identifier
conciseness and consistency,” in Sixth IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM
2006), 27-29 September 2006, Philadelphia, Pennsylvania,
USA.

[15] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining
source code to automatically split identifiers for software
analysis,” Mining Software Repositories, International Work-
shop on, vol. 0, pp. 71–80, 2009.

[16] A. De Lucia, M. Di Penta, R. Oliveto, and F. Zurolo,
“Improving comprehensibility of source code via traceability
information: a controlled experiment,” in Proceedings of 14th
IEEE International Conference on Program Comprehension.
Athens, Greece: IEEE CS Press, 2006, pp. 317–326.

[17] H. Ney, “The use of a one-stage dynamic programming
algorithm for connected word recognition,” Acoustics, Speech
and Signal Processing, IEEE Transactions on, vol. 32, no. 2,
pp. 263–271, Apr 1984.

[18] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions,insertions, and reversals,” Cybernetics and Control The-
ory, no. 10, pp. 707–710, 1966.

[19] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern
Heuristics - (2nd edition). Berlin Germany: Springer-Verlag,
2004.

[20] H. Sakoe and S. Chiba, “Dynamic programming algorithm
optimization for spoken word recognition,” Acoustics, Speech
and Signal Processing, IEEE Transactions on, vol. 26, no. 1,
pp. 43–49, Feb 1978.

[21] M. Alshraideh and L. Bottaci, “Search-based software test
data generation for string data using program-specific search
operators: Research articles,” Softw. Test. Verif. Reliab.,
vol. 16, no. 3, pp. 175–203, 2006.

[22] D. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures (fourth edition). Chapman & All,
2007.

[23] N. Anquetil and T. Lethbridge, “Assessing the relevance of
identifier names in a legacy software system,” in Proceedings
of CASCON, December 1998, pp. 213–222.

[24] A. Takang, P. Grubb, and R. Macredie, “The effects of com-
ments and identifier names on program comprehensibility:
An experimental study,” Journal of Programming Languages,
vol. 4, no. 3, pp. 143–167, 1996.

[25] E. Merlo, I. McAdam, and R. De Mori, “Feed-forward and re-
current neural networks for source code informal information
analysis,” Journal of Software Maintenance, vol. 15, no. 4,
pp. 205–244, 2003.

[26] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refac-
torings via change metrics,” in Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems Languages
and Applications. ACM Press, 2000, pp. 166–177.

[27] S. E. Sim and R. C. Holt, “The ramp-up problem in software
projects: a case study of how software immigrants naturalize,”
in ICSE ’98: Proceedings of the 20th international conference
on Software engineering. Washington DC USA: IEEE
Computer Society, 1998, pp. 361–370.

77

