
The Influence of App Churn on App Success and

StackOverflow Discussions

Latifa Guerrouj, Shams Azad, Peter C. Rigby

Department of Software Engineering, Concordia University, Montréal, Canada

E-mail: {l_guerro,sh_aza}@encs.concordia.ca, peter.rigby@concordia.ca

Abstract—Gauging the success of software systems has been
difficult in the past as there was no uniform measure. With
mobile Application (App) Stores, users rate each App according
to a common rating scheme. In this paper, we study the impact
of App churn on the App success through the analysis of 154
free Android Apps that have a total of 1.2k releases. We provide
a novel technique to extract Android API elements used by Apps
that developers change between releases. We find that high App
churn leads to lower user ratings. For example, we find that
on average, per release, poorly rated Apps change 140 methods
compared to the 82 methods changed by positively rated Apps.
Our findings suggest that developers should not release new
features at the expense of churn and user ratings.

We also investigate the link between how frequently API classes
and methods are changed by App developers relative to the
amount of discussion of these code elements on StackOverflow.
Our findings indicate that classes and methods that are changed
frequently by App developers are in more posts on StackOver-
flow. We add to the growing consensus that StackOverflow keeps
up with the documentation needs of practitioners.

Keywords-Android, API elements, Changes, StackOverflow.

I. INTRODUCTION

Google’s Play Store has more than 1 million Android Ap-

plications (Apps). This success has lead to strong competition

among similar Apps. For example, there are more than 80k

‘Education’ Apps for Android.1 Although ‘Education’ is a

broad category, from learning a new language to learning how

to draw, a search for ‘learn Spanish’ provides a list of hundreds

of Apps. With this level of competition, the empirical software

engineering community can provide practitioners with the

factors that affect App success. To this end, we address two

related research questions. First, does App churn affect App

success? Second, is there more community discussion about

the API elements that App developers frequently change?

The success of a software system has been difficult to

measure as there was not a single site and uniform ranking

scheme [1]. In contrast, App stores allow users to rank Apps

between one and five, with five indicating a good application.

Users are also able to leave comments. To understand why

users give poor ratings to Apps, Khalid et al. [2] qualitatively

coded 6k user comments on the iOS App Store. They found

12 common reasons for low ratings including, functional error,

App crash, and privacy issues.

Linares-Vasqueza et al. [3] studied how the changes of

Android API used by mobile apps impacts the success of

1http://www.Appbrain.com/stats/android-market-App-categories

individual Apps. They found that the Apps that depend upon

API classes and methods that were change and error prone

were less successful than the Apps that used more stable and

robust API elements. From this study, it should be possible to

provide information to developers about the robustness of an

API element.

Instead of studying the changes at the level of Android API,

we study App churn. We ask, Does App churn affect App

success? We do not have the version history for the Apps we

study. Instead we compare the packages, classes, and methods

that are added or removed between two consecutive releases

of an App. We find that the more an App has high churn the

lower its rating. Counter to the release engineering trend of

faster releases of new features [4], our findings suggest that

practitioners should carefully consider the tradeoff of adding

new features with the potential of receiving low ratings from

an unstable release.

Our second research question deals with App churn and

StackOverflow posts. We ask, is there more community dis-

cussion about the API elements that App developers frequently

change? Work by Kavaler et al. [5] found that larger classes

have more questions on StackOverflow indicating a possible

relationship between class complexity and number of ques-

tions. There is also a relationship between the number of

Apps that use a class and the number of StackOverflow posts.

In contrast to their work, we examine not only classes but

methods. Instead of examining a single release, we examine

the the API elements that App developers change between

releases. We find that API elements that App developers

change frequently have more discussion on StackOverflow.

We triangulate our findings by qualitatively analyzing neg-

ative review comments based on a semi-automatic analysis of

frequent n-grams from such negative comments plus a manual

investigation of the relation between App churn and the API

classes and methods that are discussed on StackOverflow.

A. Research Questions

We study the following concrete research questions:

978-1-4799-8469-5/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada321

• RQ1: Does App churn affect App success?

We want to understand if frequent changes between

releases in the API elements that an App uses affects its

success. We measure success as the average user rating

of an App and churn as the number of API elements

that change between releases of an App. We conjecture

that Apps that have high churn will have lower ratings.

Specifically, we test the following null hypothesis:

– H01: There is no significant difference between the

number of changes to API elements used by success-

ful and unsuccessful Apps.

We triangulate our findings by qualitatively analyzing

negative review comments based on a semi-automatic

analysis of frequent n-grams from such negative com-

ments.

• RQ2: Is there more community discussion about the API

elements that App developers frequently change? This

research question aims at investigating if API elements

(i.e., classes and methods) that change frequently trigger

more discussions by developers in the StackOverflow. We

measure the number of Apps that change an API element

and the number of StackOverflow posts that contain the

same element. Specifically, we test the following null

hypothesis:

– H02: There is no significant difference between the

number of StackOverflow discussions for API ele-

ments that heavily change and API elements that

change less frequently.

We provide a preliminary qualitative evaluation of some

discussions on StackOverflow that relate to frequently

changed API elements used by Android Apps.

The remainder of this paper is structured as follows. Section

II describes our empirical study design and the data we

collected. In Section III we present our quantitative findings

and triangulate them with a qualitative analysis. In Section IV

we discuss threats to validity. Section V positions our work in

the literature. Section VI concludes our work and highlights

future work.

II. EMPIRICAL STUDY DESIGN

The goal of this study is to understand how App churn

influences i) the App success and ii) the number of posts

on StackOverflow related to Android development. Success

is measured as in terms of ratings posted by the Apps users

in the Android market.

The context consists of 154 free Apps from the Google Play

Store and 1.2K of releases of theses Apps. Table I presents the

characteristics of the Apps we study: (i) the different categories

(e.g., business, finance, sports, etc.), (ii) the number of Apps

releases for each category, (iii) the number of packages, (iv)

the number of classes, and (iv) the number of methods that

fall into each category. We study Android Apps, because

user ratings provide a uniform measure of App success and

because Android has become an important software platform.

As of July 2013, Android had more Apps than Apple’s iPhone

App Store. The Android Play Store has over 1 million Apps

published and 50 billion downloads2. In addition, Android has

become the dominate mobile development platform with 71%

of practitioners developing for Android3. Not only are there

many Android Apps, the Android platform evolves quickly and

has had 17 major releases over four years [3]. This popularity

makes Android interesting for study and analysis.

TABLE I
CHARACTERISTICS OF THE STUDIED ANDROID APPS.

Category Apps Releases Packages Classes Methods

Arcade & Action 23 60 4846 73841 112101

Books & Reference 3 9 808 15204 23109

Brain & Puzzle 11 26 3132 48706 72232

Business 5 11 519 7231 10696

Cards & Casino 7 18 2747 41499 61229

Casual 9 21 3032 44662 64581

Communication 10 31 3611 60524 92380

Entertainment 3 6 1713 32248 47725

Finance 5 10 691 10830 14869

Health & Fitness 4 16 525 9622 13675

Lifestyle 7 15 2054 27870 38838

Media & Video 4 12 1150 17014 23968

Music & Audio 5 15 2651 44802 67928

News & Magazines 4 11 710 11374 18285

Photography 4 19 2992 53552 77935

Productivity 11 43 2386 34632 54061

Racing 4 11 916 14640 22128

Shopping 3 7 667 12598 18420

Social 8 30 3974 73632 108756

Sports 5 12 1109 22320 32721

Weather 3 8 2898 40632 60094

A. Data Extraction Process

We use the following data to address our research questions

(i) 154 Android Apps and their 1.2K releases, (ii) the list of

API elements used by the Apps including packages, classes,

and methods, (iii) the changes to these API elements between

each release of the App, (iv) the user ratings of the Apps, and

(v) the API elements occurring in the Android StackOverflow

posts. In this study we consider only apps having at least

two releases which is the minimum to use in such a kind

of investigation. To get the different releases of each app, we

designed a crawler that we used to crawl the Google play

store each two days to get newer versions of an individual

app during a period of almost five consecutive months. The

categories as well as the user ratings and votes were also

downloaded from the Google App Store by storing the votes

posted for each App’s release. Thus, for each app, we had

its releases, category, the rating of each release as well as its

corresponding votes. We also extracted the comments posted

by each user corresponding to each app release. The Google

play store gives access to only the 10 recent comments for

an app using the Marketplace API. We wrote a script that

searches the comments of previous app’s releases by accessing

and handling the stacks of comments saved by the Google play

store using a modified version of the Marketplace API code.

Our data set consists of 154 randomly-chosen Android apps.

2http://www.phonearena.com/news/
3http://www.developereconomics.com/reports/q3-2013/

322

We downloaded the StackOverflow posts tagged with ‘an-

droid’ between August 2008 and January 2014. We extracted

the API elements used by the Apps from the Android-related

StackOverflow posts using Rigby and Robillard’s tool that

extracts code elements in freeform text [6]. The details of

these phases is described below.

Phase 1 - Identifying API calls used by Apps.

To identify API elements used by the Apps, we downloaded

the Android PacKage (APK) files for each release of each App.

An APK file is a package file format used for the distribution

and installation of application software and middleware onto

operating systems such as the Google’s Android OS. These

files contain information such as the resources and software

code including the complied classes in the dex (Dalvik EXe-

cutable) format. Then, we extracted the API elements used by

each App from the downloaded APK files following the three

main phases.

• For each App release, we converted the APK file to jars

files using the dex2jar4 API;

• For each jar file corresponding to each App release, we

use the JClassInfo5 tool to extract API elements, i.e.,

packages, classes, and methods used by the Apps;

• For each App release, we pruned the code elements ob-

tained from JClassInfo and kept only the ones belonging

to the Android.* package.

We wrote appropriate scripts to extract API calls and

elements using the JClassInfo too. JClassinfo is written in

C. It reads java class files and provides information about

referenced packages, classes/interfaces as well as methods, etc.

We extracted non-Android API elements, however, we were

unable to use these in the analysis because the names of the

classes and methods had been obfuscated. The obfuscated code

elements could not be compared between releases to determine

which had been added or removed.

Phase 2 - Computing API Elements Changes.

Once the list of API elements (i.e., packages, classes, and

methods) used in each App release is generated, we computed

the changes in API elements between each two consecutive

releases. We focus on high-level changes including of addition

and removal of API elements between two versions. In our

work in progress, we are investigating changes that are of

implementation type by mining the Git versions histories of

each individual Android APIs.

We capture addition and removal of API elements between

two releases of an App. We computed these types of changes

by computing the difference, in terms of API elements, be-

tween two consecutive releases, i.e., V1 and V2 of an App.

Therefore, an added or removed API element between V1 and

V2 is defined as follows:

• Added API element: any API element that exists in the

current release V2 of an App and that has not been found

in its preceding release V1.

4http://code.google.com/p/dex2jar
5http://jclassinfo.sourceforge.net

• Removed API element: any API element that does not

exist in the current App release V2 but occurs in its

preceding release V1.

Although we did not include unchanged API elements in our

study, any API element that exists in both the current release

V2 of an App and its preceding release V1 is an unchanged

API element.

The formal definition of API elements changes between two

releases V1 and V2 of an App is as follows:

The number of added and removed API elements between

V1 and V2 is respectively A and R:

• A = V1
c ∩ V2 where V1

c represents all the API elements

that are not present in V2.

• R = V2
c ∩ V1 where V2

c represents all the API elements

that are not present in V1.

The set of changes C between V1 and V2 is:

C = A ∪ R.

Consequently, the number of changes for a specific API

element between two releases V1 and V2 of an App is the

number of times this API element has been added or removed

between V1 and V2.

Phase 3 - Extracting API Elements from StackOverflow.

StackOverflow is a Q&A forum for professional program-

mers6. In StackOverflow, developers post their questions and

answers as well as their votes and comments. To determine the

level of discussion about each changed API class and method

(used by Android Apps) on StackOverflow, we extract the API

classes and methods from the freeform text posts. Extracting

code elements from software artifacts, such as documentation

and requirements, has received significant research attention.

For example, information retrieval techniques, such as Vector

Space Models and Latent Semantic Index have been tried [7],

[8], but have yielded low precision and recall (less than 65%).

In our study, we use the Automated Code Element (ACE)

extraction approach suggested by Rigby and Robillard et al.

[6] to link StackOverflow discussions with the API elements

that change in each App. The advantage of this approach is

that unlike prior works [9], it does not rely on an index of

valid elements parsed from the source code of a particular

system and can process the massive number of Android related

StackOverflow posts. ACE identifies code elements in Java

constructs and creates an index of valid elements based on

the elements contained in the collection of documents. ACE

reparses each document extracting unqualified, ambiguous

terms and resolves them to their corresponding code elements

by using the term’s context. It extracts code elements from

freeform text and code that does not necessarily compile with

an average precision and recall at or above 90%. The output

of the ACE is a list of the code elements associated with each

each documents, i.e., Android StackOverflow posts in our case.

In this study, we process all question and answer posts on

StackOverflow during the period going from August 2008 to

6http://stackoverflow.com/

323

January 2014. Among these posts, we focus on the 591,555

posts that were tagged with Android. From these posts we

extract the API elements that have been changed in the Apps.

We had, in total, 479 distinct API classes and 2009 distinct API

methods that have been changed by the Apps and discussed on

StackOverflow. For each API element that has been changed in

an App, we compute the number of discussions, i.e., questions

and answers that mention it in the StackOverflow.

B. Analysis Method

App Success: To define the analysis methodology, we

analyzed the distribution of successful and unsuccessful Apps

in our dataset. Not surprisingly, user ratings are, in general,

very high for free Apps as the case in our study. High ratings

for free Apps may be due to users’ low expectations for free

Apps while this is not the case when they pay for an App

[3]. For paid apps, users’ dissatisfaction quickly increases

when they experience high App churn, malfunctions, crashes,

and bugs. In our dataset, 95 Apps exhibit an average rating

greater than four stars. We have 59 Apps with an average

rating lower than four stars. We could, thus, verify whether

there is a relationship between App churn and App success

in terms of average user rating. It is important to clarify that

Average Apps Ratings

F
re

q
u

e
n

c
y

2.5 3.0 3.5 4.0 4.5

0
2

0
4

0
6

0
8

0
1

0
0

Fig. 1. Average user ratings for the analyzed apps.

as in previous works on Android apps [3], it was impossible

to find a high number of unsuccessful apps to include in

our analysis because the Google play store remove regularly

low-rated mobile apps. More precisely, it removed 60K of

low-quality apps on February 2013 [10]. Figure 1 reports the

distribution of the average ratings assigned by users to the

analyzed apps. Note that the number of ratings received by

each app vary between 10 (the minimum we considered) and

almost 500,000. In particular, 95 apps exhibit an average rating

greater than 4 stars. Nevertheless, due to quite large corpus

of apps considered in our study, we also have 59 apps with

an average rating lower than 4 stars. Thus, we can verify a

possible relationship between App churn and App success (in

terms of average user’s rating). We grouped the apps in two

different groups on the basis of their average user ratings.

TABLE II
AVERAGE RATING: DESCRIPTIVE STATISTICS.

Min 1Q Median Mean 3Q Max

2.327 3.970 4.308 4.183 4.501 4.780

Table II shows descriptive statistics about the average rat-

ings users provide for the studied Apps. As minimum we had

2.327, first quartile=3.970, median=4.308, mean=4.183, third

quartile=4.501, and maximum=4.780. Based on the Apps

distribution analysis, we grouped the apps in two different

groups on the basis of their average user rating. In particular,

given r the average user rating, the two sets are: (i) Apps

having positive rating (i.e., r > 4) (95 Apps), (ii) Apps having

poor rating (i.e., r ≤ 4) (59 Apps). We present the descriptive

statistics (i.e., boxplots) and the results of the Mann-Whitney

test [11]. We considered the two groups of Apps, i.e., Apps

having positive rating vs. Apps having poor rating, and we

applied the Mann-Whitney test to analyze statistical signifi-

cance of the differences between App churn, in terms of API

elements changed, for the two groups of Apps. We used the

Mann-Whitney test instead of other tests because our goal

is to bring empirical evidence on the relationship between

App churn and App success and not to claim causation. The

results of the test are considered statistically significant at a

level p ≤ 0.05. Since we performed multiple tests, we had to

adjust our p-values. To do so, we applied the Holm’s correction

procedure [12]. This procedure sorts the p-values resulting

from n tests in ascending order, multiplying the smallest by n,

the next by n..1, and so on. To show the extent to which the

difference between changes in API elements used by different

groups of Apps is statistically significant, we used the non

parametric effect size measure Cliff’s delta d [13]. Cliff’s delta

is used on ordinal data and it is interpreted as follows: small

for d < 0.33, medium for 0.33 ≤ d < 0.474, and large for d ≥

0.474 [13]. Our analysis approach and presentation of results

mirrors that of Linares-Vasquez et al. [3].

Apps changes and StackOverflow posts: We grouped

API elements (i.e., classes and methods) on the basis of

the number of changes they underwent summed across all

Apps. As explained in Section II-A, for each API element, we

computed its changes, i.e., the number of times it has been

added or removed between each two subsequent releases of

an App. Based on the descriptive statistics of changes, we had

three groups of API classes and API methods to analyze. The

first group consists of API classes and methods that underwent

on average (i) less than two changes between two releases of

an App, i.e., 0 < nc ≤ 2, (ii) the second group has more

than two but less than four changes, i.e., 2 < nc ≤ 4, and a

324

group of APIs classes and methods having, on average, more

than four changes between two releases of an App, i.e., nc >

4. The goal is to analyze whether API classes and methods

that underwent more changes stimulate more discussions from

Android App developers. Like RQ1, our analysis is based on

the non-parametric Mann-Whitney test [11] and Cliff’s Delta

[13] effect size measure. We consider two of the three groups

of API classes (or API methods) at a time (e.g., group having

0 < nc ≤ 2 vs. group having nc > 4) and then we run the

Mann-Whitney test to show whether there exists a statistically

significant difference between the number of questions posted

for these groups of API classes/methods. The results were

statistically significant at p ≤ 0.05 and p-values were adjusted

using the Holm’s correction procedure [12]. Cliff’s Delta was

used to show the magnitude of the difference in terms of

StackOverflow discussions for API classes and methods used

by Apps belonging to the three studied groups.

III. ANALYSIS OF THE RESULTS

A. App Churn vs. App Success

RQ1: Does App churn affect App success?

Boxplots in Figures 2, 3, and 4 show the distributions of

the number of changes in API packages, API classes, and

API methods used by Apps having different average ratings.

As explained in Section II, Apps are grouped into two sets on

the basis of their average user rating (r). To make easy the

readability of the boxplots, we apply the log transformation to

the presented data since our distributions are skewed.

Positive Rating Poor Rating

0
1

0
2

0
3

0
4

0

N
u

m
b

e
r

o
f

C
h

a
n

g
e

s
 i
n

 A
P

I
P

a
c
k
a

g
e

s

Fig. 2. Boxplots of number of API packages changes used by Apps having
different average ratings.

The boxplots in Figure 2 show that Apps having higher

ratings exhibit a lower number of changes in the API packages

they use. In particular, Apps having positive ratings (r > 4)

underwent, on average, 9 API packages changes. They have

as a minimum of changes 1, first quartile=2, median=6, third

quartile=13, and maximum=46. In contrast, Apps having low

rating r ≤ 4 underwent, on average, 12 API packages changes.

They have as minimum one change, first quartile=3, median=9,

third quartile=17, and maximum=45.

Positive Rating Poor Rating

0
1

2
3

4
5

6

N
u

m
b

e
r

o
f

C
h

a
n

g
e

s
 i
n

 A
P

I
C

la
s
s
e

s

Fig. 3. Boxplots of number of API classes changes used by Apps having
different average ratings.

Additionally, we notice from Figure 2 that the median and

quartiles show an upward-trend, i.e., as the ratings increases,

the number of changes in API packages decreases. Similar

trends were observed for the API classes. In fact, the group

that consists of the positive ratings shows, on average, 35

changes in API classes. As minimum, they have one change

while the first quartile=2, median=9, third quartile=31, and

maximum=421. The group having low ratings underwent, on

average, 60 API classes changes (cf. Figure 3). As minimum,

they show one change while the first quartile=4, median=19,

third quartile=54, and maximum=437. For API classes, the

median and quartiles show an upward-trend of the number of

changes with a decrease if the App average rating increase.

Regarding API methods, Apps having positive ratings under-

went, on average, 82 API methods changes. As minimum, they

show one change while the first quartile=4, median=15, third

quartile=55, and maximum=1174. In contrast, Apps with low

ratings underwent, on average, 140 changes in API methods

(cf. Figure 4). they show one change while the first quartile=7,

median=30, third quartile=107, and maximum=1277.

Overall, we conclude from the boxplots that API packages,

classes and methods used by Apps having lower ratings

underwent more changes than API elements used by the highly

325

Positive Rating Poor Rating

0
1

2
3

4
5

6
7

N
u

m
b

e
r

o
f

C
h

a
n

g
e

s
 i
n

 A
P

I
M

e
th

o
d

s

Fig. 4. Boxplots of number of API methods changes used by Apps having
different average ratings.

rated Apps. In the following, we show the results obtained

from the statistical tests.

TABLE III
CHANGES IN API PACKAGES USED BY APPS HAVING DIFFERENT AVERAGE

RATING (r): MANN-WITHNEY TEST (p-VALUE) AND CLIFF’S DELTA (d).

Test Adj. p-value Cliff’s d

Poor vs. Positive ratings < 0.007 0.63 (large)

Table III reports the results of the Mann-Whitney test and

Cliff delta d when comparing the number of changes in

API packages used by Apps belonging to different groups

of average user ratings. The main results from Table III can

be summarized as follows. There is a statistically significant

difference (p-value=0.007), in terms of the number of changes

in API packages, when comparing Apps having low ratings

with Apps having positive ratings with a large effect size (Cliff

delta d=0.63) (d ≥ 0.54).

TABLE IV
CHANGES IN API CLASSES USED BY APPS HAVING DIFFERENT AVERAGE

RATING (r): MANN-WITHNEY TEST (p-VALUE) AND CLIFF’S DELTA (d).

Test Adj. p-value Cliff’s d

Poor vs. Positive ratings <0.005 0.64 (large)

A similar analysis was performed for API classes, Table IV

reports the results of the Mann-Whitney test and Cliff Delta

d when comparing the changes in API classes used by Apps

belonging to different groups of average user ratings. The main

results from table IV can be summarized as follows. There is

a statistically significant difference (p-value=0.005), in terms

of the number of changes in API packages, when comparing

Apps having low ratings with Apps having positive ratings

with a large effect size (Cliff delta d =0.64) (d ≥ 0.54).

TABLE V
CHANGES IN API METHODS USED BY APPS HAVING DIFFERENT AVERAGE

RATING (r): MANN-WITHNEY TEST (p-VALUE) AND CLIFF’S DELTA (d).

Test Adj. p-value Cliff’s d

Poor vs. Positive ratings <0.001 0.63 (large)

Table V reports the results of the Mann-Whitney test and

Cliff delta d when comparing the changes in API methods used

by Apps belonging to different groups of average user ratings.

The main results from table IV can be summarized as follows.

There is a statistically significant difference (p-value=0.001),

in terms of the number of changes in API packages, when

comparing Apps having low ratings with Apps having positive

ratings with a large effect size (Cliff delta d=0.63) (d ≥ 0.54).

The results show that our conjecture is valid for the three

investigated API element levels. Intuitively, one could assume

that the results for API packages and classes should be

consistent with the results obtained at the method level since

changes in methods reflect changes at classes and packages

as well. In this study, we bring empirical evidence on the fact

that frequent changes in API elements (used by Android Apps)

are, in general, a threat to the success of the Apps using them.

In summary, we can reject our null hypothesis, i.e., API

packages, API classes, and API methods used by successful

Apps make, on average, less frequent changes in comparison

with API elements used by unsuccessful Apps.

B. App Churn vs. StackOverflow Discussions

RQ2: Is there more community discussion about the API

elements that App developers frequently change?

Similarly to the analysis method followed in RQ1, we

analyzed the number of discussions in StackOverflow related

to API classes and methods, which are subject to different

number of changes. We found that the number of StackOver-

flow discussions increases for API classes that underwent more

changes between releases of Apps. In particular, the number

of discussions for API classes having an average number of

changes nc > 4, i.e., that make frequent changes (244,899

discussion) is higher in comparison with API classes having

2 < nc ≤ 4, i.e., medium changes (197,264 discussion) and

0 < nc ≤ 2, i.e., few changes (51,052 discussion).

TABLE VI
STACKOVERFLOW DISCUSSIONS PER API CLASSES UNDERGOING

DIFFERENT AVERAGE CHANGES BETWEEN RELEASES: MANN-WHITNEY

TEST (ADJ. p-VALUE) AND CLIFF’S DELTA (d).

Test Adj. p-value Cliff’s d

Few vs. Medium changes <0.0001 -0.31 (small)

Few vs. Frequent changes <0.0001 -0.34 (medium)

Medium vs. Frequent changes 0.10 -0.08 (small)

326

The number of StackOverflow discussions also increases

for API methods that underwent a higher average of changes

between subsequent releases of Apps. In particular, the num-

ber of discussions for API methods making use of frequent

changes (298,301 question) is higher in comparison with API

methods undergoing medium changes (208,686 question) and

methods having few changes (74,463 question).

Table VI reports the results of the Mann-Whitney test (p-

value) and the effect size measure Cliff’s delta d for the API

classes. We compared each group of API classes (classified on

the basis of the number of changes they underwent) with all

other groups of API classes that underwent a smaller number

of changes. As we can see in Table VI, the API classes

that frequently change between releases of an App show

a statistically significantly higher number of StackOverflow

discussions than API classes that make use of a lower number

of changes.

The results can be summarized as follows:

1) there is a statistically significant difference (p-value

<0.0001) between API classes that underwent, on aver-

age, few changes and medium ones with a small effect

size (Cliff’s delta d =-0.31).

2) there is a statistically significant difference (p-value

<0.0001) between API classes that underwent, on aver-

age, few changes and frequent changes with a medium

effect size (Cliff’s delta d =-0.34).

3) there is no statistically significant difference between

API classes that underwent, on average, medium

changes and frequent changes.

Similar analysis was performed at the API method level.

As we can see in Table VII, API methods that are subject

to more changes between releases of Apps are often related

to a statistically significant higher number of discussions by

StackOverflow developers than API methods that underwent

a lower average number of changes (p-value ≤ 0.01). The

results can be summarized as follows:

1) API methods that make a medium number of changes

exhibit more StackOverflow discussions in comparison

with API methods that underwent few changes with a

statistically significant difference (p-value <0.001) and

a medium effect size (Cliff’s delta d =-0.34).

2) API methods that underwent frequently changes ex-

hibits more StackOverflow discussions in comparison

with API methods making use of few changes with a

statistically significant difference (p-value <0.0001) and

a medium effect size (Cliff’s delta d =-0.43).

3) API methods that underwent frequently changes exhibits

more StackOverflow discussions in comparison with

API methods making use of a medium number of

changes with a statistically significant difference (p-

value=0.01) and a small effect size (Cliff’s delta d =-

0.15).

Interestingly, we find differences between results for meth-

ods and classes in two tests: the first test (i.e., group of API

classes/methods that underwent, on average, few changes vs.

TABLE VII
STACKOVERFLOW DISCUSSIONS PER API METHODS UNDERGOING

DIFFERENT NUMBER OF CHANGES BETWEEN ANDROID RELEASES:
MANN-WHITNEY TEST (ADJ. p-VALUE) AND CLIFF’S DELTA (d).

Test Adj. p-value Cliff’s d

Few vs. Medium changes <0.0001 -0.34 (medium)

Few vs. Frequent changes <0.0001 -0.43 (medium)

Medium vs. Frequent changes 0.01 -0.15 (small)

group that underwent medium changes) and the third test

(medium vs. frequent changes). In effect, there is no statistical

difference between classes that underwent medium changes

vs. those that frequently change, in terms of StackOverflow

discussions while methods exhibit a significant difference for

such a test. Also, API methods exhibit a medium effect size

in comparison with API classes that exhibit a small effect

size when comparing the number of posts triggered for groups

having few and medium number of changes. This is likely due

to the fact that methods underwent, in general, more changes

than classes.

On summary, we can reject our null hypothesis, i.e., API

classes and API methods that change very often between two

releases of an App are more mentioned in the StackOverflow,

i.e., they were more likely difficult to understand by develop-

ers.

C. Qualitative Results

We performed a qualitative analysis to analyze the main

reasons behind the users dissatisfaction and disappointment.

The quantitative analysis performed to answer our research

questions provided us with strong empirical evidence that

Apps having higher churn are generally those having lower

success. Although we are aware this is not sufficient to claim

causation we performed a qualitative analysis to (at least in

part) find a rationale of the relation between App churn and

the low success of some apps. First, we performed a coarse

grained automatic analysis of comments left by users to apps

having poor ratings, for a total of 95,499 comments. The goal

of this analysis is just to get an idea of the main reasons behind

the users dissatisfaction with unsuccessful apps. In particular,

we are interested in understanding if negative comments are

mainly related to lack of features in the apps (and thus,

no relation with the app churn can be hypothesized), to

bugs/malfunctions of apps (and thus, a possible relation with

apps churn could exist), or both. For such a purpose, we

extracted from the negative comments the n-grams composing

them after pre-processing the comments (i.e., removing stop-

words, punctuation, etc.), considering n ∈ [1..3]. We found

that most frequent n-grams from the top 100 frequent ones

that we generated are related to problems associated with the

normal functioning of the app: does not work, crashes, please

fix, app sucks, stopped working, start false, does not work, no

longer works. However, there are also comments that seem

have a link with unsatisfactory features offered by the app:

useless, service stopped, device not compatible, wifi off, etc.

Therefore, as expected crashes and bugs/malfunctions, which

327

could be due to high App churn, represent one of the main

reasons behind users dissatisfaction with downloaded apps.

The next step is to find insights about the relation between

the app churn and the apps success. This steps consists of

manually analyzing some of the unsuccessful apps on Google

Play trying to understand if App churn directly impacted the

apps’ user experience. By analyzing the App chrun of one

of the very poorly rated application belonging to the category

Media & Video and perceived as useless by App users between

two of its consecutive releases: releases 4.5.4 and 4.5.5, we

found that 9 packages int it were subject to change between

these two releases. In addition, 19 classes and 38 methods

have been changed between the same releases. Examples of

complaints reported by users of this app are : Constant video

errors, Garbage App Crashes after 20 seconds on S4. A

second very poorly rated App belonging to the category Sports

was subject to 29 changes in its packages, 363 changes in

its classes, and 1090 changes in its methods between two

of its releases: 0.9.21 and 1.1.12. One of the users reports

a complaint about crashes and bugs regarding this app : It

crashes before it even opens now. Wow. The app is tolerable,

too bad it didn’t work. May be the bugs can’t be fixed because

you’re working on the new website, which is also crap. A

second review reports the following: Loosing faith in App.

This app just keeps getting worse and worse, please fix it

so that it doesn’t keep crashing, and It takes a long time

to load, regardless of device. Please fix or I’ll replace it

with something else that works properly. Another illustrative

example concerns an App used for communication and rated

as unsuccessful. The comments provided by the users, for

this App, were mostly related to issues associated with App

churn, presence of bugs, and issues related to functionality and

features of this App. In the following, we present an example

of review that we found for the this App in the Google Play

Store:

Rating: **

A Google User - December 10, 2013

A lot of bugs. Program doesn’t start properly. Crashes

on first attempt to start. Usually opens on second

attempt. Slow to load scores.

This can suggest that, very likely, it is difficult, for app

developers, to stay tuned with changes performed in such Apps

with high chrun which, more likely, leads to bugs in such

apps. In general, the performed qualitative analysis confirmed

the results of the quantitative one: App churn represent impact

the success of Android apps.

IV. THREATS TO VALIDITY

Construct validity deals with how well our measures rep-

resent real-world quantities. One concern is that the use of

average ratings as an indicator of success can be based on

subjective user votes. We are aware that such ratings can be

highly subjective and imprecise. To mitigate such a threat,

we analyzed a large sample of data, i.e., 154 Android Apps

and 1.2K of their releases and we discarded apps having less

than ten ratings. Another threat is related to the cost of an

App which may have a significant effect on the App rating. In

effect, free Apps are, in general, highly rated since users have

low expectations for such Apps. We mitigated such a threat by

dealing with a large number (i.e., 154) of Apps including 59

unsuccessful Apps. One more threat is related to the way the

Apps use the API elements (e.g., inheritance). In our study,

the focus is on the changes of API elements and not on the

type of their usage.

Internal validity deals with alternative explanations that may

explain our results. We draw our conclusions based on the

use of appropriate, non-parametric statistical tests, i.e., Mann-

Withney. In addition, we used a procedure to adjust the p-

value obtained from multiple tests. Furthermore, we show the

magnitude of the obtained differences in terms of a suitable

non-parametric effect size measure, i.e., Cliff’s Delta. In this

study, we bring empirical evidence of the relation between App

churn and App success as well as between App churn and the

number of discussions triggered in StackOverflow. However,

we do not claim any causation but we believe App churn can

be essential for the App success besides other factors such

as its usability, features, etc. We supported our quantitative

findings by a qualitative analysis consisting of automatically

analyzing negative users’ comments posted in the Google Play

Market and manually checking some reviews and relating them

to high Apps churn and discussions posted by the Android

StackOverflow community.

Threats to external validity concern the generalization of

our findings. We studied 154 Apps and 1.2K releases from

the Android Play Store. While we downloaded over 2000

Apps, we considered only 154 to deal with apps having more

than two releases. A larger sample that include iOS and other

platforms might lead to different conclusions; however, we

are confident in the conclusion that we have drawn from our

sample. Finally, we make the data of this research investigation

fully available for replication purposes up on request.

V. RELATED WORK

Recent research has targeted the analysis of mobile Apps

especially Android Apps. These works can be clustered as

follows: App API usage; Android API stability; and Docu-

mentation, StackOverflow, and the Android API.

App API usage

Shabtai et al. [14] and Sanz et al. [15] have used machine-

learning techniques to categorize Android Apps based on the

bytecode extracted from Android Application Package (APK)

files.

Mojica Ruiz et al. [16] analyzed code reuse in Android

applications through a study of mobile Apps belonging to

different categories in the Android Market. Their approach

uses a technique previously applied by Davies et al. [17], [18]

328

on the Maven Repository. They used the APK files of the

Android Apps to extract the bytecode and, thus, generate class

signatures to compute usage frequencies via inheritance and

class reuse. The results of their study have shown that almost

23% of the classes inherit from a base class in the Android

API, and 27% of the classes inherit from a domain specific

base class.

Unlike previous work that examines the API elements in a

single App, we examine multiple releases and determine how

frequently Apps change the API elements they use.

Android API stability

Martie et al. [19] observed trends in the bug discussions

in the Android open source project public issue tracker. The

results of their study show that there is a relation between

the issue topic distributions overtime and major development

releases of the Android OS. Assaduzzaman et al. [20] mined

buggy changes in the Android by computing the textual simi-

larity between commit messages and bug reports. Additionally,

they identified potential problematic parts in development of

Android that can lead to maintenance implications.

Linares-Vasquez and et al. [3] analyzed how the fault-

proneness and change-proneness of the Android platform’s

API influenced App success, as perceived by the users, in

terms of votes, ratings, etc. The results of their empirical study

indicate that fault-prone and change-prone API methods can

negatively impact the success of the apps using them.

These studies examine trends in the Android platform. They

identify problematic API elements based the change and error

proneness of each element. Our work complements these

works by examining the churn of individual Apps and relates

this churn between App releases to success. We find that

frequently changed Apps have lower ratings than more stable

Apps. These findings suggest that release engineers should be

caution when releasing new features that might introduce high

Apps churn and lead to lower ratings.

Documentation, StackOverflow, and the Android API

Creating traceability links between code elements and de-

veloper discussions, documentation, and other textual sources

has received significant research attention [8], [9], [21], [6].

Parnin et al. [22] linked code elements in StackOverflow

threads discussions and API classes by using heuristics based

on exact matching of classes names with words in posts

(title, body, snippets, etc.). They provide interesting results

on how quickly developers adopt change to APIs. Using a

similar approach, Kavaler et al. [5] studied the relationship

between Android usage of API elements and the discussion

of these elements on StackOverflow. Both studies found a

positive relationship between API class usage and number of

StackOverflow discussion.

Recently, researchers [23] have shown that that developers

in the SO community react to changes in Android APIs, in

particular when the body of API methods is modified.

Our work expands these works by considering not only

classes, but methods as well. Our linking is more accurate

as we use the context of each API code element [6]. We also

consider changes to Apps, instead of a static view of a large

number of Apps.

VI. CONCLUSION

We make three novel contributions in this paper:

1) Using the element changes between releases, we relate

App churn to App success through user ratings.

2) We relate the number of API class and method discus-

sions on StackOverflow to the number of times these

classes and methods were added or removed from the

Apps in our sample.

3) We semi-automatically analyze 95,499 negative user

App comments to understand the main reasons behind

the dissatisfaction and disappointment of the users of

unsuccessful Apps.

We find that less stable Apps tend to have lower ratings.

In Section III-A we find, for example, that poorly rated Apps

change on average 140 methods, while positively rated apps

change only 82 methods. The trend of less successful Apps

having more changes holds for packages and classes as well.

Our findings could influence the decision to release new

features at the expense of churn and possible low ratings.

API classes and methods that are changed more frequently

by App developers have more posts on StackOverflow. For

example, in Section III-B we find that methods that are

involved in more than four changes have significantly more

posts than methods involved in less than four changes. Our

findings add to a growing body of knowledge [22], [5] that

suggests that community documentation keeps up with the

demands of software developers.

In Section III-C we triangulated our quantitative findings.

Automatically analyzing 95,499 negative comments from users

of poorly rated Apps showed that users mostly complain about

issues related to crashes, bugs as well as malfunctions.

Future work could combine our method of extracting code

elements between App releases and relating these to the quality

of the underlying Android platform as studied by Linares-

Vasquez et al. [3]. We expect that relating App changes to

App success will allow empirical software researchers to tie

other characteristics to software success.

REFERENCES

[1] D. M. German, “Using software distributions to understand the relation-
ship among free and open source software projects,” in Mining Software

Repositories Conference, 2007.
[2] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What Do Mobile

App Users Complain About? A Study on Free iOS Apps,” IEEE

Software, 2013.
[3] M. Linares-Vasquez, G. Bavota, C. Bernal-Cardenas, M. D. Penta,

R. Oliveto, and D. Poshyvanyk, “Api change and fault proneness: a
threat to the success of android apps,” in ESEC/SIGSOFT FSE, 2013,
pp. 477–487.

[4] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases
improve software quality? an empirical case study of mozilla firefox,”
in Mining Software Repositories Conference, 2012, pp. 179–188.

[5] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov,
“Using and asking: Apis used in the android market and asked about in
stackoverflow,” in International Conference of Social Informatics, 2014,
pp. 405–418.

[6] P. C. Rigby and M. P. Robillard, “Discovering essential code elements
in informal documentation,” in International Conference on Software

Engineering, 2013, pp. 832–841.

329

[7] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE

Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
2002.

[8] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in International Conference on Software Engineering,
2010, pp. 375–384.

[9] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an api and its learning resources,” in International Conference on

Software Engineering, 2012, pp. 47–57.
[10] S. Perez, Nearly 60K Low-Quality Apps Booted From Google Play Store

In February, Points To Increased Spam-Fighting.
[11] W. J. Conover, Practical Non-parametric Statistics., 1998.
[12] S. Holm, “A simple sequentially rejective Bonferroni test procedure,”

Scandinavian Journal of Statistics, vol. 6, pp. 65–70, 1979.
[13] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical

approach, 2nd ed. Lawrence Earlbaum Associates, 2005.
[14] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code analysis

for classifying android applications using machine learning,” in Inter-

national Conference on Computational Intelligence and Security, 2010,
pp. 329–333.

[15] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and P. Bringas,
“On the automatic categorization of android applications,” in Consumer

Communications and Networking Conference, 2012, pp. 149–153.
[16] I. M. Ruiz, M. Nagappan, B. Adams, and A. Hassan, “Understanding

reuse in the android market,” in International Conference on Program

Comprehension, 2010, pp. 113–122.

[17] J. Davies, D. M. German, M. W. Godfrey, and A. J. Hindle, “Software
bertillonage: Finding the provenance of an entity,” in Working Confer-

ence on Mining Software Repositories, 2011.
[18] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software

bertillonage - determining the provenance of software development
artifacts,” Empirical Software Engineering, vol. 18, no. 6, pp. 1195–
1237, November 2013.

[19] L. Martie, V. Palepu, H. Sajnani, and C. Lopes, “Trendy bugs: Topic
trends in the android bug reports,” in Working Conference on Mining

Software Repositories, 2012.
[20] M. Assaduzzaman, M. Bullock, C. Roy, and K. Schneider, “Bug intro-

ducing changes: A case study with android,” in Working Conference on

Mining Software Repositories, 2012, pp. 116–119.
[21] N. Bettenburg, S. Thomas, and A. Hassan, “Using fuzzy code search

to link code fragments in discussions to source code,” in European

Conference on Software Maintenance and Reengineering, 2012, pp.
319–328.

[22] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and dynamics of api discussions on stack
overflow.” Technical Report GIT-CS-12-05, Georgia Tech, Tech. Rep.,
2012.

[23] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and
D. Poshyvanyk, “How do api changes trigger stack overflow
discussions? a study on the android sdk,” in Proceedings of the 22Nd

International Conference on Program Comprehension, ser. ICPC 2014.
New York, NY, USA: ACM, 2014, pp. 83–94. [Online]. Available:
http://doi.acm.org/10.1145/2597008.2597155

330

