
Automatic Derivation of Concepts based on the Analysis of Source Code Identifiers

Latifa Guerrouj
DGIGL - SOCCER Lab, Ptidej Team

Ecole Polytechnique de Montréal, Québec, Canada
Email: latifa.guerrouj@polymtl.ca

Abstract—The existing software engineering literature has
empirically shown that a proper choice of identifiers influences
software understandability and maintainability. Indeed, identi-
fiers are developers’ main up-to-date source of information and
guide their cognitive processes during program understanding
when the high-level documentation is scarce or outdated and
when the source code is not sufficiently commented.

Deriving domain terms from identifiers using high-level and
domain concepts is not an easy task when naming conventions
(e.g., Camel Case) are not used or strictly followed and-or when
these words have been abbreviated or otherwise transformed.
Our thesis is to develop an approach that overcomes the
shortcomings of the existing approaches and maps identifiers
to domain concepts even in the absence of naming conventions
and-or the presence of abbreviations.

Our approach uses a thesaurus of words and abbreviations
to map terms or transformed words composing identifiers to
dictionary words. It relies on an oracle that we manually build
for the validation of our results. To evaluate our technique, we
apply it to derive concepts from identifiers of different systems
and open source projects. We also enrich it by the use of
domain knowledge and context-aware dictionaries to analyze
how sensitive are its performances to the use of contextual
information and specialized knowledge.

Keywords-Identifier Splitting, Program Comprehension, Lin-
guistic Analysis, Software Quality.

I. RESEARCH CONTEXT: PROGRAM COMPREHENSION
AND SOFTWARE QUALITY

The software engineering literature reports evidence on
the usefulness of source code identifiers to enhance software
quality, program comprehension and program understand-
ability. Many researchers [1], [2], [3], [4], [5] have shown
the crucial role of identifers in these areas. Indeed, some
research works have studied the usefulness of identifiers
to recover traceability links [6], [7], measure conceptual
cohesion and coupling [8], [9], and, in general, as an asset
that can highly affect source code understandability and
maintainability [10], [11], [12].

Researchers have also studied the quality of source code
comments and the use of comments and identifiers by devel-
opers during their understanding and maintenance activities
[12], [13], [14]. They all concluded that identifiers can be
useful if carefully chosen to reflect the semantics and the role
of the named entities they are intended to label Stemming
from Deißenböck and Pizka observation on the relevance of
terms in identifiers to drive program comprehension, almost

all previous works attempted to map identifiers to concepts
by splitting them into component terms and words to guide
the cognitive process using these identifier fragments.

To the best of our knowledge, two families of approaches
exist to segment compound identifiers: the simplest one
assumes the use of the Camel Case naming convention or the
presence of an explicit separator. The more complex strategy
is implemented by the Samurai tool and it relies on a lexicon
and uses greedy algorithms to identify component words [5].

However, the above mentioned approaches have limita-
tions. First, they are not always able to associate identifier
substrings to words or terms, e.g., domain-specific terms
or English words, which could be useful to understand the
extent to which the source code terms reflect terms in high-
level artifacts [15]. Second, they do not deal with word
transformations, e.g., abbreviation of pointer into pntr.

II. QUESTION

The research question of our thesis can be stated as
follows:

How to build a contextual approach able to automatically
derive domain terms and thus concepts based on the analysis
of source code identifiers even in the absence of naming
conventions and/or the presence of truncated/abbreviated
words?

III. ANSWER

To answer our question, we propose an approach that
assumes that programmers create identifiers by applying a
set of transformation rules on terms/words. For example, to
create an identifier for a variable that counts the number
of defects in a program, the two words number and defects
can be concatenated with or without an underscore, e.g.,
error defect or defectnumber or following the Camel Case,
e.g., defectNumber. Contractions of one or both words
are also possible leading to identifiers such as defectNbr,
nbr defect, nbrOfDefect, or dfct nbr.

The approach uses the string-edit distance between terms
and words to quantify how close are words, representing
concepts, to such terms and, thus, provide a measure of the
likelihood that the terms refer to some words. To deal with
abbreviations, our technique uses a thesaurus of words and
abbreviations and applies word transformation rules in the
context of a hill-climbing search. But, a thesaurus is not

2010 17th Working Conference on Reverse Engineering

1095-1350/10 $26.00 © 2010 IEEE

DOI 10.1109/WCRE.2010.45

301

enough when several possible mappings are available. It is
why, we propose the use of n-gram language models as a
semantic concept predictor. N-Grams are traditionally used
in large vocabulary speech recognition systems to provide
the recognizer with an a-priori likelihood P(W) of a given
word sequence W.

In a nutshell, our approach relies on input dictionaries
and a distance function to segment (if necessary) simple
and composed identifiers and associate the resulting terms
with words in the dictionaries, even if the terms are trun-
cated/abbreviated. Dictionaries may include English words
and–or technical words, e.g., microprocessor and database
(in the computer domain), or known acronyms, e.g., afaik
(in the Internet jargon).

IV. METHODOLOGY

To answer our research question, we propose and follow a
methodology where the tree main phases are detailed below.
Details about the accomplishment of our previous work and
how our technique components have been developed are
reported in [16].

1. Building a thesaurus: To map terms or trans-
formed words composing identifiers to dictionary
words, we build a thesaurus of words and abbrevi-
ations. One possibility to build such a thesaurus
would be to merge different specific or generic
dictionaries, such as those of spell checkers, e.g.,
i-spell which contains about 35,000 words, or of
upper ontologies, e.g., WordNet, which contains
about 90,000 entries. Yet, to reduce the computa-
tion time, we build smaller dictionaries, e.g., dic-
tionaries containing the most frequently-used En-
glish words only as well as specialized dictionaries
containing acronyms and known abbreviations.

2. Building an oracle: To validate our approach, we
need an oracle. This means that for each identifier,
we will have a list of terms obtained after split-
ting it and, wherever needed, expending contracted
words. The oracle is produced as follows: (i) a
splitting of each sampled identifier, and expanded
abbreviations is produced independently (ii) for all
cases where there is a different splitting/expansion,
a discussion meeting is held and a consensus is
reached. The manual analysis is performed relying
on various sources of information of the projects,
ranging from source code comments to user man-
uals.

3. Validation: To evaluate our approach, we apply
it to derive concepts from identifiers of different
systems and open source projects. In fact, we first
apply our technique to JHotDraw and Lynx using
an English dictionary composed of 3,000 words.
Then, we apply it to a set of 1,026 C identifiers
randomly extracted from a corpus of 340 open

source programs using a single English dictionary
of 2,600 words and also various dictionaries: a
dictionary of about 2,800 words, the previous dic-
tionary augmented with domain knowledge, i.e.,
about 700 domain terms, acronyms, and well-
known abbreviations, a full English dictionary of
175,000 words, contextual dictionaries, i.e., dic-
tionaries built using terms from the same func-
tion, file, or program, and contextual dictionaries
augmented with domain knowledge. Our empirical
study compares the three approaches on their split-
ting correctness (with respect to the oracle), and on
their precision, recall, and FMeasure.

V. ON-GOING WORK AND FORECAST COMPLETION

At this time of our thesis, we achieved four phases of our
project: we developed the key components of our approach,
and achieved the tree phases of our methodology. Our on-
going work consists on addressing the research questions
that have not been addressed yet, expanding the evaluation
of our approach to others systems and open source projects.
We are also studying the possibility of building a general
oracle for identifer splitting. We plan to improve the current
performances of our technique in term of execution time
and focus on the effect of contextual information and spe-
cialized knowledge on it to analyze how sensitive are its
performances to the use of such information. Finally, we
wish to conduct more experimental studies for the validation
and the generalization of our results.

VI. RELATED WORK

The crucial role of identifiers in program understanding,
traceability recovery, feature and concept location motivates
the large body of relevant work. In the following, we focus
on the most relevant contributions to identifier splitting.

Takang et al. [10] empirically showed that commented
programs are more understandable than non-commented
programs and programs containing full-word identifiers are
more understandable than those with abbreviated identifiers.
Similar results have also been achieved by Lawrie et al. [11],
[12], who suggest that the identification of words composing
identifiers, and, thus, of the domain concepts associated with
them could contribute to a better comprehension.

Binkley et al. [18] found that the Camel Case convention
led to better understanding than underscores and, when
subjects are properly trained, that subjects performed faster
with identifiers built using the Camel Case convention rather
than with underscores.

Other work [2], [19] have investigated the information
carried by the terms composing identifiers, their syntactic
structure and quality. An in-depth analysis of the internal
structure of identifier was conducted by Caprile and Tonella
[1]. They reported that identifiers are chosen to convey

302

Table I
MAIN RESEARCH QUESTIONS TO ADDRESS DURING OUR PROJECT

Research Questions Answers

What is the percentage of identifiers correctly split by the proposed approach? Overall, about 96% of JHotDraw identifiers and 93% of Lynx identifiers were
correctly segmented by our approach with zero distance [16].

How does the proposed approach perform compared with the Camel Case splitter
when applied to JHotDraw and Lynx?

Fisher’s exact test indicates that the proposed approach performs better than
Camel Case splitter on both systems and significantly better on Lynx [16].

What percentage of identifiers containing word abbreviations is the approach able to
map to dictionary words when applied to JHotDraw and Lynx?

44% and 70% of JHotDraw and Lynx identifiers containing abbreviations are
correctly split by our technique into component words [16].

How does our approach compare with alternative approaches, Camel Case splitting
and Samurai, when C identifiers must be split?

With the simple English dictionary, our approach performs worse than the
alternative approaches. However, our technique outperforms other approaches
when the simple English dictionary is augmented with domain knowledge or,
with even better results, when a program-level contextual dictionary augmented
with domain knowledge is used [17].

How sensitive are the performances of approach to the use of contextual information
and specialized knowledge in different dictionaries?

Two factors contribute to the increase of performance of our approach: augment-
ing the dictionary with domain knowledge, using a program-level contextual
dictionary, or augmenting a program-level dictionary with domain knowledge to
obtain the best performances [17].

What percentage of identifiers containing word abbreviations is our approach able
to map to dictionary words when applied to a set of 1,026 C identifiers randomly
extracted from a corpus of 340 open source programs?

Out of the 73 abbreviations that our technique could potentially map to dictionary
words, our approach produces a correct mapping for 35 of them, achieving an
accuracy of 48%. Although this percentage does not look very high, to the best
of our knowledge, our approach is the first and only approach able to deal with
abbreviations [17].

How could we enhance the accuracy of our results in term of finding the appropriate
candidate (concept) represented by a given identifer?

To increase the accuracy of our results in term of choosing the domain terms that
correspond to a given identifier, we plan to develop a new word transformation
rules that mimic the developers cognitive processes when building identifiers.
We also want to develop a variant of our algorithm in which these transformation
rules will be applied according to a determined priority instead of being
randomly-chosen.

How could we overcome the non-determinism presented by our approach in the way
word transformation rules are applied and in the way in which the candidate words
to be transformed are selected?

This fact suggests the need for improving the heuristic to select the candidate
word to be used in splitting an identifier.

How could we improve the current performances of our approach in term of execution
time?

The string-edit distance used by our technique has a cubic complexity in the
number of characters in the identifier (say M), words in the dictionary (say
T), and maximum number of characters composing dictionary words (say N).
For each word in the dictionary, we must compute as many distances as there
are cells to fill the distance matrix, with a complexity of O(M × N). Since
there are T dictionary words, the overall complexity is O(T × M × N). A
remarkable increase of performance can be achieved by saving the first edit-
distance computation and, in the context of the hill climbing, recomputing only
cells where the distance improves.

relevant information about the role and properties of the
program entities that they label.

Guidelines for the production of high-quality identifiers
have been provided by Deißenböck et al. [3]. Methods
related to identifier refactoring were proposed by Caprile
and Tonella [2] and Demeyer et al. [20].

Some studies [6], [7] reported the use of identifiers to
recover traceability links. Also, textual similarity between
methods within a class, or among methods belonging to
different classes, has been used to define new measures of
cohesion and coupling such as the Conceptual Cohesion of
Classes proposed by Marcus et al. [21], which bring infor-
mation complementary to structural cohesion and coupling
measures.

Many commonalities can be found with previous work
using the Camel Case convention to split identifiers and,
in particular, with the work of Enslen et al. [5]. We
share with these previous works the goal of automatically
splitting identifiers into component terms. However, we do

assume the use of neither Camel Case conventions nor a
set of known prefixes or suffixes. In addition, our approach
automatically generates a thesaurus of abbreviations using
transformation rules attempting to mimic the developers’
cognitive processes when building identifiers.

VII. CONCLUSION

Our initial work gave birth to TIDIER: An automatic tool
that derives domain terms based on the analysis of source
code identifiers. TIDIER, by mapping identifiers to concepts,
provides hints that could help developers comprehend pro-
grams during their understanding and maintenance activities.

The power of DTW in showing how close a given
identifier term is to a dictionary word reveals how well the
concepts associated to the dictionary words are conveyed by
the identifier. Reported results show that with program-level
dictionaries augmented with domain knowledge, i.e., com-
mon acronyms, abbreviations, and C library functions, our
approach significantly outperforms the previous approaches.

303

Future works will be devoted to the development of new
word transformation rules that mimic the cognitive processes
of developers when composing identifiers with abbreviated
forms, and to the introduction of enhanced heuristics for
term selection and word transformations. we also plan to
improve the string-edit distance guiding our approach, to
speed up the algorithm by reducing the search space, and to
use semantic information. In fact, one of the main limitations
of our technique is its pure lexical-level matching and its
cubic complexity. Finally, we plan to combine our approach
with Samurai by Enslen et et al. [5] to benefit from their
respective advantages while reducing their limitations.

ACKNOWLEDGMENTS

I am deeply grateful to my supervisors for their guidance
and support.

REFERENCES

[1] B. Caprile and P. Tonella, “Nomen est omen: Analyzing the
language of function identifiers,” in Proc. of the Working
Conference on Reverse Engineering (WCRE), Atlanta Georgia
USA, October 1999, pp. 112–122.

[2] ——, “Restructuring program identifier names,” in Proc.
of the International Conference on Software Maintenance
(ICSM), 2000, pp. 97–107.

[3] F. Deissenbock and M. Pizka, “Concise and consistent nam-
ing,” in Proc. of the International Workshop on Program
Comprehension (IWPC), May 2005.

[4] D. Lawrie, H. Feild, and D. Binkley, “Syntactic identifier con-
ciseness and consistency,” in Sixth IEEE International Work-
shop on Source Code Analysis and Manipulation Philadelphia
Pennsylvania USA, Sept 27-29 2006, pp. 139–148.

[5] E. Enslen, E. Hill, L. L. Pollock, and K. Vijay-Shanker,
“Mining source code to automatically split identifiers for
software analysis,” in Proceedings of the 6th International
Working Conference on Mining Software Repositories, MSR
2009, Vancouver, BC, Canada, May 16-17, 2009, 2009, pp.
71–80.

[6] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo, “Recovering traceability links between code and
documentation,” IEEE Trans. Softw. Eng., vol. 28, pp. 970–
983, Oct 2002.

[7] J. I. Maletic, G. Antoniol, J. Cleland-Huang, and J. H. Hayes,
“3rd international workshop on traceability in emerging forms
of software engineering (TEFSE2005).” in ASE, 2005, p. 462.

[8] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the con-
ceptual cohesion of classes for fault prediction in object-
oriented systems,” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 2, pp. 287–300, 2008.

[9] D. Poshyvanyk and A. Marcus, “The conceptual coupling
metrics for object-oriented systems,” in Proceedings of 22nd
IEEE International Conference on Software Maintenance.
Philadelphia Pennsylvania USA: IEEE CS Press, 2006, pp.
469 – 478.

[10] A. Takang, P. A. Grubb, and R. D. Macredie, “The effects
of comments and identifier names on program comprehensi-
bility: an experiential study,” Journal of Program Languages,
vol. 4, no. 3, pp. 143–167, 1996.

[11] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective
identifier names for comprehension and memory,” Innovations
in Systems and Software Engineering, vol. 3, no. 4, pp. 303–
318, 2007.

[12] ——, “What’s in a name? a study of identifiers,” in Pro-
ceedings of 14th IEEE International Conference on Program
Comprehension. Athens, Greece: IEEE CS Press, 2006, pp.
3–12.

[13] B. Fluri, M. Wursch, and H. Gall, “Do code and comments
co-evolve? on the relation between source code and comment
changes,” in 14th Working Conference on Reverse Engineer-
ing (WCRE 2007), 2007, pp. 70–79.

[14] Z. M. Jiang and A. E. Hassan, “Examining the evolution of
code comments in postgresql,” in Proceedings of the 2006 In-
ternational Workshop on Mining Software Repositories MSR
2006, 2006, pp. 179–180.

[15] A. D. Lucia, M. Di Penta, R. Oliveto, and F. Zurolo,
“Improving comprehensibility of source code via traceability
information: a controlled experiment,” in Proceedings of 14th
IEEE International Conference on Program Comprehension.
Athens Greece: IEEE CS Press, 2006, pp. 317–326.

[16] N. Madani, L. Guerrouj, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol, “Recognizing words from source code identifiers
using speech recognition techniques,” in Proceedings of the
14th European Conference on Software Maintenance and
Reengineering (CSMR 2010), March 15-18 2010, Madrid,
Spain. IEEE CS Press, 2010.

[17] L. Guerrouj, D. P. Massimiliano, A. Giuliano, and Y.-G.
Guéhéneuc, “Tidier: An identifier splitting approach using
speech recognition techniques,” Journal of Software Main-
tenance and Evolution: Research and Practice, May 2010
(submitted for publication).

[18] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To
camelcase or under score,” in The 17th IEEE International
Conference on Program Comprehension, ICPC 2009, Van-
couver, British Columbia, Canada, May 17-19, 2009. IEEE
Computer Society, 2009, pp. 158–167.

[19] E. Merlo, I. McAdam, and R. D. Mori, “Feed-forward and re-
current neural networks for source code informal information
analysis,” Journal of Software Maintenance, vol. 15, no. 4,
pp. 205–244, 2003.

[20] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refac-
torings via change metrics,” in Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems Languages
and Applications. ACM Press, 2000, pp. 166–177.

[21] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the con-
ceptual cohesion of classes for fault prediction in object-
oriented systems,” IEEE Trans. Softw. Eng., vol. 34, no. 2,
pp. 287–300, 2008.

304

