
TRIS: a Fast and Accurate Identifiers Splitting and Expansion Algorithm

Latifa Guerrouj1, Philippe Galinier1, Yann-Gaël Guéhéneuc1, Giuliano Antoniol1, Massimiliano Di Penta2
1 DGIGL, École Polytechnique de Montréal

2 Dept. of Engineering, University of Sannio, Italy

Abstract—Understanding source code identifiers, by identi-
fying words composing them, is a necessary step for many
program comprehension, reverse engineering, or redocumen-
tation tasks. To this aim, researchers have proposed several
identifier splitting and expansion approaches such as Samurai,
TIDIER and more recently GenTest. The ultimate goal of such
approaches is to help disambiguating conceptual information
encoded in compound (or abbreviated) identifiers.

This paper presents TRIS, TRee-based Identifier Splitter, a
two-phases approach to split and expand program identifiers.
First, TRIS pre-compiles transformed dictionary words into a
tree representation, associating a cost to each transformation.
In a second phase, it maps the identifier splitting/expansion
problem into a minimization problem, i.e., the search of the
shortest path (optimal split/expansion) in a weighted graph.

We apply TRIS to a sample of 974 identifiers extracted from
JHotDraw, 3,085 from Lynx, and to a sample of 489 identifiers
extracted from 340 C programs. Also, we compare TRIS with
GenTest on a set of 2,663 mixed Java, C and C++ identifiers.
We report evidence that TRIS split (and expansion) is more
accurate than state-of-the-art approaches and that it is also
efficient in terms of computation time.

Keywords-Identifier Splitting/Expansion, Program Compre-
hension, Linguistic Analysis, Optimal Path, Weighted Acyclic
graph.

I. INTRODUCTION

When software documentation is scarce, outdated, or

simply unavailable, source code remains the only up-to-

date source of information for software engineers. Identifiers

(e.g., names of classes, methods, parameters, or attributes,

etc.) account for approximately more than half of linguis-

tic information [1] contained in source code. Researchers

agree on the identifiers role and relevance for maintenance

and evolution tasks. Identifiers must therefore be carefully

chosen, to reduce the time and effort needed by program

comprehension, a step preliminary to any software re-

engineering or evolution activity [2], [3], [4], [5].

Identifiers are often composed concatenating (possibly

following underscore or Camel Casing rules) domain or ap-

plication specific terms (e.g., browser in a Web application),

natural language words, often plain English words (e.g.,
user), as well as jargon, abbreviated words and–or acronyms

(e.g., execQuery, memPntr, SOA Engine). To understand

the source code, a developers map identifiers onto high-

level concepts they convey. Whenever an identifier is a

compound one, a crucial and preliminary task developers

have to mentally perform is that of splitting identifiers

into component terms, possibly expanding abbreviations and

acronyms composing them into words.

In the quest of supporting program understanding, source

code redocumentation, and software reverse-engineering, the

research community has developed various approaches to

split identifiers into terms and expand terms into words.

Beside the widely known and basic Camel Case split, it

is worth to mention Samurai [6], TIDIER [7], and more

recently Normalize [8] based on GenTest [9]. Different

approaches have different strengths and weaknesses. On

one hand, for Java source code, a simple Camel Case split

algorithm and Samurai perform reasonably well [6]. On

the other hand, neither Samurai nor Camel Case perform

term expansion (i.e., expand abbreviation such as pntr into

the original word pointer). In addition, the accuracy of the

latter techniques on C code is much worse than on Java,

see for example [7]. TIDIER performs term expansion and

the reported results [7] suggest that it outperforms Samurai.

However, TIDIER has a cubic complexity in the number of

characters composing the identifier, words in the dictionary,

and maximum number of characters composing dictionary

words. GenTest is known to be fast, however it generates all

possible splittings for hard-words composing an identifier

i.e., it may generate an overwhelming number of possible

splits.

This paper proposes TRIS (TRee-based Identifier Split-

ter), a novel two-phases approach to split and expand source

code identifiers. TRIS takes as input a dictionary of words

(e.g., taken from an upper domain ontology), the source code

of the program to analyze, containing identifiers to be split

and expanded.

TRIS represents transformations as a rooted directory tree

where every node is a letter and every path in the tree (from

the root to a leaf) represent a transformation having a given

cost. Based on such transformations, possible splittings and

expansions of an identifier are represented as an acyclic

direct graph, called an auxiliary graph where again nodes

represent letters and edges represent transformation costs.

Once such a graph is built, solving the optimal splitting and

expansion problem means determining the shortest path—

from the starting node to the ending node—on such a graph

using a simplified Dijkstra’s algorithm.

This paper describes the TRIS splitting and expansion

approach, along with an empirical evaluation. To this aim,

we evaluate TRIS on publicly available data sets used to

2012 19th Working Conference on Reverse Engineering

1095-1350/91 $25.00 © 4891 IEEE

DOI 10.1109/WCRE.2012.20

103

evaluate previous approaches. We use a sample of 974

JHotDraw (Java) identifiers, 3,085 Lynx (C) identifiers [10];

a set of 489 C identifiers sampled from 340 GNU utilities

[7]; and a set of 2,663 mixed Java, C, and C++ identifiers

used in the study by Lawrie et al. [9]. Reported results show

that TRIS performs more accurately than state of the art

approaches and is efficient in terms of computation time.

II. BACKGROUND AND RELATED WORK

Stemming from Deißenböck and Pizka’s observation on

the relevance of identifiers’ terms for program compre-

hension [1], several approaches have been introduced to

split and expand source code identifiers. In the following,

we provide an overview of existing identifier splitting and

expansion techniques.

A. Camel Case Splitting
Camel Case splitting is a simple and widely used pre-

processing algorithm. It is based on the use of Camel Case

and separators. This approach splits compound identifiers

according to the following rules:
RuleA: Underscore, structure and pointer access, as well

as special symbols are replaced with the space character.
RuleB: Identifiers are split where terms are separated

using the Camel Case convention. For example, userId is

split into user and Id, while setGID is split into set and

GID.
RuleC: When two or more upper-case characters are

followed by one or more-lower case characters, the identifier

is split at the last-but-one upper-case character. For example,

SSLCertificate is split into SSL and Certificate. Sometimes, a

space is inserted before and after each sequence of digits. For

example, print file2device is split into print, file, 2, device.
Camel Case splitting cannot split same-case composite

identifiers, such as USERID and currentsize into separate

terms.

B. Samurai
Samurai [6] is a technique to split identifiers into their

component terms by mining term frequencies in large source

code bases. It relies on two assumptions:

1) A substring composing an identifier is also likely to be

used in other parts of the program or in other programs

alone or as a part of other identifiers.

2) Given two possible splits of a given identifier, the

split that most likely represents the developer’s intent

partitions the identifier into terms occurring more often

in the program.

Samurai uses its two frequency tables in conjunction with

Camel Case rules. It first tries to apply Camel Case split

and then ranks possible splits according to its identifiers

frequency tables (one program specific and the other global).

In this way, Samurai can deal with same-case identifiers,

such as USERID, currentsize, or mixed-case ones (e.g.,
DEFMASKBit).

C. TIDIER: Term IDentifier RecognizER

TIDIER [7] is an approach to split and expand program

identifiers using high-level and domain concepts captured

into multiple dictionaries. It is inspired by speech recog-

nition techniques and uses a thesaurus of words and ab-

breviations, plus a string-edit distance between terms and

words computed via Dynamic Time Warping. TIDIER’s

main assumption is that it is possible to mimic developers

when creating an identifier relying on a set of words transfor-

mations. For example, to create an identifier for a variable

that counts the number of software bugs, the two words,

number and bugs, can be concatenated with or without an

underscore, or following the Camel Case convention e.g.,
bugs number, bugsnumber or bugsNumber. Developers may

drop vowels and (or) characters to shorten one or both

words of the identifier, thus creating bugsNbr or nbrOfbugs.

Similarly to Samurai, TIDIER exploits contextual informa-

tion in the form of specialized dictionaries (e.g., acronyms,

contractions and domain specific terms) and mimics the

process of transforming words via contraction rules.

D. GenTest and Normalize

GenTest [9] is a splitting algorithm that consists of two

parts: generation and test. The generation part of GenTest

generates all possible splittings; the test part, however,

evaluates a scoring function against each proposed splitting.

GenTest uses a set of metrics to characterize the quality of

the split.

This work was refined to support the expansion of iden-

tifiers and led to Normalize [8]. Normalize deals with

identifier expansion using a machine translation technique,

the maximum coherence model. The heart of Normalize

is a similarity metric computed from co-occurrence data.

Co-occurrence data with context information is exploited to

select the best candidate among several possible expansions.

We share with the above works the general problem of

identifier split and expansion. Most recent identifier split

and–or expansion approaches (e.g., Samurai, TIDIER and

GenTest) use in a way or the other contextual information,

encoded as frequency tables, specific domain-dependent dic-

tionaries, or as metrics to select the most likely split. TRIS

is inspired by TIDIER, Samurai and GenTest. However,

TRIS problem formulation and solution is novel and its

implementation is fast and accurate.

III. THE APPROACH

In this section, we first formalize the problem of finding

the splitting-expansion of a given identifier as an optimiza-

tion problem, then we describe in details the phases and

steps implemented in TRIS.

Programmers often build source code identifiers by ap-

plying a set of transformation rules to words, such as

dropping all vowels (e.g., pointer becomes pntr), dropping

104

one or more characters, or dropping a suffix (e.g., allocation
becomes alloc) [7].

TRIS treats the identifier splitting and expansion as an

optimization problem, in the following referred as Optimal

Splitting-Expansion (OSE) problem. The search space of

the OSE problem contains a set of solutions that represent

potential splitting-expansions of the input identifier. Once a

cost is assigned to each solution, the OSE problem consists

in finding a solution with minimal cost, which, hopefully,

corresponds to the correct splitting-expansion of the input

identifier.

To efficiently resolve the OSE problem, TRIS applies

a two-phase strategy. The first phase—named “building

dictionary transformations”—builds a set of legal transfor-

mations based on an input dictionary using a family of

transformation types. The obtained set of transformations is

then compressed and represented as an arborescence i.e., a

directed rooted tree. The second phase is named “identifier

processing”. Its goal is to determine an optimal splitting-

expansion of a given input identifier. Note that the second

phase uses the directed rooted tree (i.e., the arborescence)

built during the first phase.

In practice, we generally want to find the splitting-

expansion of a set of identifiers originating from the same

source code—instead of a single one. It is very important to

note that building the dictionary transformations (phase 1)

has to be performed only once. Then, identifier processing

(phase 2) will be applied to each identifier to be split/ex-

panded.

As we will show in this section, the identifier processing

algorithm boils down to finding a shortest path in an

identifier graph. Its complexity is O(n2), where n represents

the size of the input identifier, this is to say quadratic in the

length of the identifier to split. As a result, producing the

splitting-expansion of a given input identifier is very fast—

thousands of identifiers can be split within a few seconds.

On the other hand, the creation of dictionary transformations

(which is performed only once) can take a few seconds (e.g.,
35 milliseconds for a dictionary of 2,953 words on a machine

having a processor running at 2.10 GHz and memory (RAM)

of 6.00 GB).

A. TRIS Formalization of the Optimal Splitting-Expansion
Problem

The input of the OSE problem consists of: (i) an identifier

to be split/expanded; (ii) a dictionary (ii) source code of the

system the identifier belongs to. In the following, we define

the transformations, the search space, and the cost function

of the OSE problem.

Transformations
We call transformation a couple (wOrig→ w) where

wOrig is a dictionary word and w a string. For example,

the transformation (pointer→ pntr) indicates that the dic-

tionary word pointer has been transformed into pntr.

The current implementation of TRIS uses four types of

transformations:

1) Null transformation: keep the word as it is;

2) Vowels removal: remove all vowels contained in the

dictionary word, e.g., pointer → pntr but the first one

if it is the first character of the identifier;

3) Suffix removal: suffixes such as ing, tion, ed, ment,
and able are removed from the dictionary word, e.g.,
improvement → improve;

4) First n characters: keeps only the first n characters of

a word with n ∈ {3,4,5}, e.g., rectangle → rect for

n = 4.

In the following, we denote by type(.) the type of a given

transformation.

Search Space
A potential solution (i.e., an element of the search space)

corresponds to a splitting-expansion. Such a solution is

composed of a series of transformations. For example, a

potential splitting-expansion of drawimagrect is (draw→
draw)/(image→ imag)/(rectangle→ rect) as:

• the concatenation of draw, imag, and rect produces

draw.imag.rect=drawimagrect;
• the words draw, image, and rectangle belong to a given

dictionary;

• the transformations (draw→ draw), (image→ imag),

and (rectangle→ rect) are legal transformations (whose

types are respectively 1, 4, and 4).

Cost Function
Recall that a solution (splitting-expansion) is composed of

a series of transformations. The cost of a solution is simply

the sum of the costs of the transformations it is composed of.

Each transformation has an associated cost C(wOrig→ w)

defined as the sum of two terms:

C(wOrig→ w) = α∗Freq(wOrig)+C(type(wOrig→ w))

The first term Freq(wOrig) is the relative frequency of

the dictionary word wOrig in the source code, multiplied

by a parameter α. The frequency is simply the number of

occurrences of a dictionary word in the source code, divided

by the sum of all occurrences of dictionary words in source

code. TRIS uses the relative frequency as a local context to

determine the most likely identifier splitting-expansion.

The value of the parameter α is negative: as a result, a

transformation (wOrig→ w) such that wOrig has a low

frequency will be in fact penalized.

The second component C(type(wOrig→ w)) corresponds

to the cost of the transformation type. The cost of the

four different transformation types are algorithm parameters

whose values will be reported in the empirical part of

105

the paper; the general idea is to assign a low cost to a

transformation type that is believed to be more natural and

more often used by developers.

B. Building Dictionary Transformations Algorithm

The goal of this phase is to build the set of transformations

and to represent it as an arborescence. It consists of the three

following successive steps:

(1.1) Computation of the frequency of dictionary words;

(1.2) Construction of the set of transformations;

(1.3) Construction of the arborescence of transformations.

Each of these steps is detailed in the following. In this con-

text, a dictionary is just a collection of strings representing

application-level concepts (e.g., socket), known acronyms

(e.g., cpu), and plain English words (e.g., a set of WordNet

entries).

Computation of the frequency of dictionary words (step
1.1)

Input: (1) a dictionary; (2) code of the application.

Output: frequencies of dictionary words.

During this step, the source code is scanned. For each

string found in the source code, if this string corresponds to

a dictionary word, we increment the number of occurrences

of this word. Finally, this procedure returns the frequency

of each dictionary word.

Construction of the set of transformations (step 1.2)
Input: (1) a dictionary; (2) frequencies of dictionary words.

Output: set of transformation triples.

For each dictionary word wOrig and each type T of trans-

formation (T=1..4), we determine each word w that can be

derived from wOrig according to T. For each transformed

word w, we add the triplet (wOrig, w, C(wOrig, w)) to the

set of transformations.

Construction of the arborescence (step 1.3)
Input: set of transformation triples.

Output: arborescence of transformations.

The goal of this step is to represent the set of transformations

(built during step 1.2) under the form of an arborescence.

The rationale is that, in the following, it will dramatically

decreases the complexity of the construction of the auxiliary

graph (step 2.1).

In this arborescence, each node (except the root) is labeled

with a letter of the alphabet. Each transformation triple

(wOrig, w, cost) is represented by a path that starts from

the root and whose nodes are labeled by the letters of w. The

last node X contains a pointer towards the considered trans-

formation triple. In fact, as several transformations (wOrig1,

w1, cost1), (wOrig2, w2, cost2), etc. may produce the

same string w, we only take into account one of those

whose cost is minimum. An interesting property of this

arborescence is that, given a string w, we can determine in

Table I
DICTIONARY TRANSFORMATIONS BUILDING INFORMATION FOR THE

IDENTIFIER callableint.

Information for the Dictionary Transformations Building Phase

Dictionary Words (D) Words Frequencies Transformations Set
d1 = “able” f1 = 0.1 t1 = (d1, abl, 0.55)

t2 = (d1, able,−0.2)
d2 = “call” f2 = 0.2 t3 = (d2, cal, 0.35)

t4 = (d2, call,−0.4)
t5 = (d2, cll, 0.6)

d3 = “callable” f3 = 0.6 t6 = (d3, calla,−0.95)
t7 = (d3, callable,−1.2)
t8 = (d3, cllbl,−0.2)

d4 = “interface” f4 = 0.1 t9 = (d4, int, 0.55)
t10 = (d4, inte, 0.3)
t11 = (d4, inter,−0.05)
t12 = (d4, interface,−0.2)
t13 = (d4, intrfc, 0.8)

�

��

��

�

�

�

��

�

�
�

���

�

�

	�

��
�

�

�

��

�

��

	

��

��

��

��

�

��

��

��

��

��

��
���

��

�	

�
�

��

���

���

���

���

�

Figure 1. Arborescence of Transformations for the Dictionary D.

O(|w|) if there exists at least one transformation (wOrig,

w, cost) and, if it is the case, which is the transformation

of minimal cost. Table I provides a simplified example

of a (small) dictionary used to split/expand the identifier

callableint along with dictionary words frequencies and the

resulting transformation triples.

The arborescence of the transformations corresponding

to the dictionary D used to split/expand the identifier

callableint is shown in Figure 1.

Let N be the sum of the sizes of w such that (wOrig, w,

cost) belongs to the set of transformations. The arborescence

construction algorithm complexity is O(N). Therefore, with

respect to worst-case complexity, there is no extra-cost to

transform the set of transformation triples into an arbores-

cence.

C. Identifier Processing Algorithm

The goal of identifier processing is to determine an

optimal splitting-expansion of a given input identifier Idtf.

106

It consists of the two following steps:

(2.1) Construction of the auxiliary graph associated to Idtf;
(2.2) Search for a shortest path in the auxiliary graph,

corresponding to an optimal splitting-expansion of Idtf.

Construction of the auxiliary graph (step 2.1)
Input: (1) arborescence of transformations; (2) input identi-

fier.

Output: identifier auxiliary graph.

Let Idtf[i;j] be the substring of Idtf between characters

at position i and j. The auxiliary graph of Idtf is defined as

follows:

• The graph has |Idtf |+1 vertices denoted by

v0,...,v|Idtf |;
• For a transformation triple (wOrig, w, cost) such that

w=Idtf[i;j], there is an edge between the vertices vi
and vj and the weight of this edge equals cost.

We can notice that a path in the auxiliary graph corre-

sponds to a splitting-expansion of Idtf, and that the weight

of this path corresponds to the cost of the corresponding

splitting-expansion. Therefore, a shortest path in the graph

corresponds to an optimal splitting-expansion.

More in detail, the auxiliary graph is built as follows. For

every position p in the identifier Idtf, p = 0...|Idtf |, we

go from the root of the arborescence of transformations and

down following the path labeled by Idtf[p;n] where n =
|Idtf |. For each node X on this path, if X .transfPtr is not

null and points toward a transformation (wOrig, w, cost),
we insert into the graph an edge between vp and vp+|w| and

assign to this edge a weight equals to cost. The complexity of

this procedure is O(|n|2), thus it is quadratic in the identifier

length and as identifiers are usually short this step is very

fast.

Figure 2 shows the auxiliary graph corresponding to the

identifier callableint, built using the arborescence shown in

Figure 1. On this example, we have two possible splits

(based on the set of transformations shown in Table I).

The first split is: call-able-int. The second is callable-int.
Their corresponding expansions (pointing to their original

dictionary words) are respectively call-able-interface (as int

is derived from interface in the example), and callable-

interface. According to the cost of transformations indicated

in the last column of Table I, denoted (for simplification of

Figure 2) by ti.cost with i ∈ {1,...,13} (computed based

on words frequencies shown in the second column of the

same table, plus costs of used transformation types reported

in section IV of the paper), the minimum cost is the one

corresponding to the split callable-int and hence to the

expansion callable-interface.

Search for an optimal splitting-expansion (step 2.2)
Input: (1) Idtf auxiliary graph.

Output: an optimal splitting-expansion of Idtf.
The auxiliary graph is acyclic. Therefore, although some

Table II
MAIN CHARACTERISTICS OF JHOTDRAW AND LYNX.

JHotDraw and Lynx Systems

JHotDraw Lynx

Analyzed Releases 5.1 2.8.5
Files 155 247
Size (KLOCs) 16 174
Identifiers (> 2 chars) 2,348 12,194

edges may have negative weights (remember the α mul-

tiplier), it makes sense to talk about a shortest path in

this graph. The shortest path found in the auxiliary graph

provides us with an optimal splitting-expansion of Idtf. The

complexity of this procedure is at worst O(|n|2), where

n = |Idtf |.
IV. CASE STUDY

The goal of this study is to analyze the proposed identifier

splitting and expansion approach TRIS, with the purpose
of evaluating its ability to correctly split and expand com-

pound identifiers. The quality focus is the accuracy of TRIS

when splitting identifiers and expanding abbreviated terms

(resulting from the splitting) with respect to oracles, and

compared with other state-of-the-art approaches, namely a

simple Camel Case Splitter, Samurai, TIDIER, and GenTest.

The perspective is of researchers interested to develop an

approach for identifier splitting and expansion, with the aim

of easing program comprehension and maintenance tasks.

The context consists of a set of identifiers extracted from

Java, C and C++ programs. Specifically, we use (i) 974

identifiers extracted from the source code of JHotDraw, (ii)

3,085 identifiers from Lynx, (iii) 489 identifiers extracted

from the source code of 340 C GNU Linux utilities, and (iii)

a mixed set of Java, C, and C++ identifiers used in the study

by Lawrie et al. [9] and made available on-line1. We used the

latter data for replication purposes as we want to compare

TRIS (in terms of splitting accuracy) with GenTest2.

JHotDraw3 is a Java framework for drawing 2D graphics.

The project started in October 2000 with the main purpose of

illustrating the use of design patterns in a real context. Lynx4

is a free, open-source, text-only Web browser and Gopher

client. Lynx is entirely written in C. Its development began in

1992 and it is now available on several platforms, including

Linux, Unix, and Windows. Table II reports the main charac-

teristics of Lynx and JHotDraw analyzed releases. The 340

C/C++ programs from which we sample 489 identifiers are

337 GNU5 projects, the Linux Kernel6 2.6.31.6, FreeBSD7

8.0.0, and the Apache Web server8 2.2.14.

1www.cs.loyola.edu/ binkley/ludiso
2http://splitit.cs.loyola.edu
3http://www.jhotdraw.org
4http://lynx.isc.org/
5http://www.gnu.org/
6http://www.kernel.org/
7http://www.freebsd.org/
8http://www.apache.org/

107

�

�

�

�

�

�

� � � �� �	 ��
 � �c a a ll l b n tie ��

�������

�������
�	�����

�
�����

�������
������� �
�����

Figure 2. Auxiliary Graph for the Identifier callableint.

Table III
MAIN CHARACTERISTICS OF THE 340 PROJECTS FOR THE 489

RANDOMLY-SAMPLED IDENTIFIERS.

GNU Projects (337 Projects)

C C++ .h Java

Files 57,268 13,445 39,257 14,811
Size (KLOCs) 25,442 2,846 6,062 3,414
Terms 26,824 – 17,563 –
Identifiers 1,154,280 – 619,652 –
Oracle Identifiers 927 – 26 –

Linux Kernel

C C++ .h Java

Files 12,581 – 11,166 –
Size (KLOCs) 8,474 – 1,994 –
Terms 19,512 – 13,006 –
Identifiers 845,335 – 352,850 –
Oracle Identifiers 73 – 4 –

FreeBSD

C C++ .h Java

Files 13,726 128 7,846 15
Size (KLOCs) 1,800 128 8,016 4
Terms 21,357 – 12,496 –
Identifiers 634,902 – 278,659 –
Oracle Identifiers 20 – 0 –

Apache Web Server

C C++ .h Java

Files 559 – 254 –
Size (KLOCs) 293 – 44 –
Terms 6,446 – 3,550 –
Identifiers 33,062 – 11,549 –
Oracle Identifiers 11 – 0 –

The main characteristics of these projects are listed in

Table III.

The sample of data used by Lawrie et al. was randomly

drawn from a source base that includes 186 programs, for a

total of 26 MLOC of C, 15 MLOC of C++, and 7 MLOC of

Java. Raw and oracle data sets are available on-line9. Details

about the empirical evaluation can be found in a previous

paper by Lawrie et al. [9].

As explained in Section III.A, the costs assigned to the

introduced transformation types (second component of our

cost function) are algorithm parameters. In our empirical

study, we assigned 0 as a cost to the null transformation,

(0.75, 0.5, and 0.25) as costs to the three transformations

keeping the n first characters with n ∈ {3,4,5} respectively.

For the transformations removing vowels and suffix removal,
we respectively assigned 1 and 1.5. Also, we assigned to

the parameter α, -2 as a value. To determine the values of

the parameters, we run TRIS multiple times with different

transformations’ costs and alpha values.

9http://www.cs.loyola.edu/ binkley/ludiso/

The study reported in this section aims at addressing the

following research question:

What is the accuracy of the TRIS identifier splitting
and expansion approach compared with alterna-
tive state-of-the art approaches?

Specifically, we measure the TRIS performances by com-

paring the splitting/expansion of the automatic approaches

with those of the manually built oracles, and by assessing

the splitting/expansion accuracy in terms of correctness,

precision, recall, and F-measure, as reported in Section IV-A.

We then compare the performances of TRIS with those of

Camel Case splitter, Samurai, TIDIER, and GenTest.

A. Variable Selection and Study Design

The main independent variable of our study is the splitting

algorithm used. This factor has five possible levels: (1) TRIS

(which is our experimental group), and four control groups,

i.e., (2) Camel Case, (3) Samurai, (4) TIDIER, (5) GenTest.

The dependent variables considered in our study are

precision, recall, and F-measure, and the splitting correct-
ness. The splitting correctness tells whether an identifier

was correctly split or not (with respect to the oracle). The

correctness measure has the disadvantage of providing a

Boolean evaluation of the splitting, i.e., when the split is

almost correct (most of the terms are correctly identified),

then correctness would still be false. To overcome the

limitation of the correctness measure and provide a more

insightful evaluation of TRIS, we also report the precision,

recall, and F-measure.

Given an identifier si to be split and expanded,

oi = {oraclei,1, . . . oraclei,m} the expansion in the

manually-produced oracle, and ti = {termi,1, . . . termi,n}
the set of terms obtained by an approach, we evaluate the

performances for the approaches in terms of precision, recall,

and F-measure.

The only case in which we use the correctness is when

comparing with the oracle of GenTest, for which we only

have correctness data available from [9].

B. Building the Oracles

As explained above, to evaluate the performances of TRIS

(i.e., precision, recall, and F-measure), we need an oracle,

i.e., for each identifier, a list of words obtained after splitting

it and, wherever needed, after expanding abbreviated words.

108

For example, a possible oracle for drawRect would be draw
rectangle, obtained by splitting the identifier after the fourth

character and expanding the abbreviation Rect into rectangle.

We build the oracles following a consensus approach i.e.,
two authors independently proposed an identifier split and

expansion, and disagreements were discussed when the out-

come was different. We adapted this approach to minimize

the bias and the risk of producing erroneous oracles.

To build our oracles, we selected 974 JHotDraw iden-

tifiers, 3,085 Lynx ones, and 489 C ones extracted from

the above mentioned 340 C programs, these randomly-

selected identifiers were composed ones for which it was

possible to define a manual splitting/expansion. Our analysis

does not consider identifiers that are single English word

(therefore no splitting/expansion was needed), and cryptic

ones i.e., identifiers for which it was impossible to find

a splitting/expansion. Examples of this category are a few

identifiers extracted from Lynx source code, e.g., hmmm,

ixoth, or gieszczykiewicz. We manually split identifiers and

mapped abbreviated splits terms into words, thus, creating

oracles for JHotDraw, Lynx and the 489 C identifiers.

For the comparison between TRIS and GenTest we used

an oracle provided by Lawrie et al. [9].

C. Analysis Method

Study research questions aim at understanding if TRIS

helps in splitting and expanding identifiers and thus easing

program comprehension. In fact, we assume that, given an

identifier, there exists an exact subdivision of it into words

that, possibly after being transformed and once concatenated,

form the identifier.

To apply TRIS, we built an application-level dictionary

for each program part of our study, i.e., for JHotDraw,

Lynx, and for each one of the 340 programs from which

we sampled the C identifiers. In addition, we enrich these

dictionaries by the use of domain knowledge (i.e., common

abbreviations and acronyms, library functions, etc.) as a

previous work [7] showed that a dictionary containing (i)

application-level terms, (ii) English dictionary words, and

(iii) common abbreviations and acronyms, allows to obtain

the best performances. Details about the construction of

application-level dictionaries and the used domain knowl-

edge can be found in [7]. More precisely we used: (i) a set

of 105 acronyms used in computer science (e.g., ansi, dom,

inode, ssl, url), (ii) a set of 164 abbreviations collected

among the authors used when programming in C (e.g., bool

for Boolean, buff for buffer, wrd for word), and (iii) a set of

492 C library functions (e.g., malloc, printf, waitpid, access).

The application-level dictionaries for JHotDraw and Lynx

contain 2,289 and 2,953 dictionary words respectively, while

descriptive statistics about the size of dictionaries for the 340

GNU utilities are reported in Table IV.

We filtered identifiers containing short (up to two letters)

prefixes such as f in fname or ly. This is because such

Table IV
DESCRIPTIVE STATISTICS OF THE USED PROGRAM-LEVEL

DICTIONARIES FOR THE 340 GNU UTILITIES.

Dictionary level Min 1Q Median 3Q Max Avg σ
Application 29 900 1,797 3,028 22,190 2,320 2,374

prefixes can lead to any dictionary word containing the

character f or the string ly.

To compare TRIS with other algorithms (except Gen-

Test) we use a non-parametric test for pair-wise median

comparison, namely, the Wilcoxon paired test. We use a

paired test as our samples are dependent, as we compute,

for each identifier, the difference of precision, recall and

F-measure between the different approaches. The Wilcoxon

test indicates whether the median difference between two

approaches is significantly different from zero i.e., H0 :
μd = 0, where μd is the median of the differences.

Finally, in addition to the statistical comparison, we

compute the effect-size of the difference using Cliff’s delta

non-parametric effect size measure [11], defined as the

probability that a randomly-selected member of one sample

has a higher response than a randomly selected member of

a second sample, minus the reverse probability. Cliff’s delta

ranges in the interval [−1, 1] and is considered small for

0.148 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large

for d ≥ 0.474. Since we execute the Wilcoxon paired test

multiple times to compare the various approaches, we must

correct significant p-values. We use the Holm correction

[12].

For what concerns the comparison with GenTest, since

the comparison is performed in terms of correctness (which

is a categorical variable), we use Fisher’s exact test which

compares proportion of correct and non correct splittings

provided by TRIS and GenTest. To quantify the effect size

of the difference between the two approaches, we also

computed the odds ratio (OR) indicating the likelihood of an

event to occur, defined as the ratio of the odds p of an event

occurring in one sample, i.e., the percentage of identifiers

correctly split by TRIS (experimental group), to the odds

q of it occurring in the other sample, i.e., the percentage

of identifiers correctly split by GenTest (control group): OR

= p/(1−p)
q/(1−q) . An OR of 1 indicates that the event is equally

likely in both samples. OR > 1 indicates that the event is

more likely in the first sample (TRIS) while an OR < 1
indicates the opposite (GenTest).

D. Study Results

This section reports the results of the empirical study.

Table V reports descriptive statistics (1st quartile, median,

3rd quartile, mean, standard deviation) of the accuracy of

TRIS and the ones of Camel Case, Samurai, and TIDIER.

Results of the statistical tests for JHotDraw are reported

in Table VI. Similarly, descriptive statistics and statistical

test results for Lynx are reported in Tables VII and VIII

respectively.

109

Table V
PRECISION, RECALL AND F-MEASURE OF TRIS, CAMEL CASE,

SAMURAI, AND TIDIER ON JHOTDRAW.

Metric Approach 1Q Median Mean 3Q σ
Precision Camel Case 1.0000 1.0000 0.9244 1.0000 0.2424

Samurai 1.0000 1.0000 0.9316 1.0000 0.2244
TIDIER 1.0000 1.0000 0.9716 1.0000 0.1472
TRIS 1.0000 1.0000 0.9804 1.0000 0.2025

Recall Camel Case 1.0000 1.0000 0.9203 1.0000 0.2502
Samurai 1.0000 1.0000 0.9367 1.0000 0.2129
TIDIER 1.0000 1.0000 0.8984 1.0000 0.2158
TRIS 1.0000 1.0000 0.9084 1.0000 0.1213

F-measure Camel Case 1.0000 1.0000 0.9217 1.0000 0.2476
Samurai 1.0000 1.0000 0.9325 1.0000 0.2200
TIDIER 1.0000 1.0000 0.9233 1.0000 0.1791
TRIS 1.0000 1.0000 0.9328 1.0000 0.1614

Table VI
COMPARISON AMONG APPROACHES: RESULTS OF WILCOXON PAIRED

TEST AND CLIFF’S DELTA EFFECT SIZE ON JHOTDRAW.

Approach 1 Approach 2 adj p-value Cliff’s delta

TRIS Camel Case 0.431 0.041

TRIS Samurai 0.894 0.001

TRIS TIDIER 0.024 0.043

Results indicate that, for JHotDraw, TRIS achieves F −
measure = 0.9328, Camel Case F −measure = 0.9217,

Samurai F − measure = 0.9325, and TIDIER F −
measure = 0.9233. Not surprisingly, Camel Case and

Samurai work well enough on JHotDraw, because JHot-

Draw developers carefully adhered to coding standards and

identifier creation rules. Also, TIDIER performs almost

similarly to them, even if its approach does not necessarily

reward the use of coding standards as for instance Camel

Case does. Statistical comparisons of Table VI show that

(i) there is no significant difference between TRIS, Camel

Case, and Samurai on JHotDraw; and (ii) TRIS performs

significantly better than TIDIER with a very small effect

size, d < 0.148. On Lynx, in terms of F-measure, TRIS

significantly outperforms (F −measure = 0.9206) Camel

Case (F −measure = 0.3851), Samurai (F −measure =
0.4634), and TIDIER (F − measure = 0.8525). More

precisely, the statistical comparisons of Table VIII indicate

that, on Lynx (i) TRIS significantly outperforms the Camel

Case splitter (d = 0.743) and Samurai (d = 0.684), and

(ii) TRIS performs significantly better than TIDIER with a

small effect size (d = 0.204).

Table IX reports the performances of TRIS on the sample

of 489 C identifiers. It also reports TIDIER accuracy on

this set. On such data set, we do not report performances

of Camel Case and Samurai, since it is known from [7]

that TIDIER outperforms Camel Case and Samurai on C

systems when using application-level dictionaries augmented

with domain knowledge. Hence, we are only interested to

compare TRIS with the approach performing better on this

data set i.e., TIDIER. Results show that, in terms of F-

measure, TRIS performs better (F − measure = 0.879)

than TIDIER (F−measure = 0.6409) for this set also. The

Table VII
PRECISION, RECALL AND F-MEASURE OF TRIS, CAMEL CASE,

SAMURAI, AND TIDIER ON LYNX.

Metric Approach 1Q Median Mean 3Q σ
Precision Camel Case 0.0000 0.5000 0.4065 0.7500 0.4147

Samurai 0.0000 0.5000 0.4767 1.0000 0.4089
TIDIER 0.8000 1.0000 0.8609 1.0000 0.2674
TRIS 1.0000 1.0000 0.9344 1.0000 0.1369

Recall Camel Case 0.0000 0.3333 0.3705 0.6667 0.4066
Samurai 0.0000 0.3333 0.4569 1.0000 0.4101
TIDIER 0.7500 1.0000 0.8499 1.0000 0.2684
TRIS 1.0000 1.0000 0.9138 1.0000 0.2060

F-measure Camel Case 0.0000 0.4000 0.3851 0.7273 0.4086
Samurai 0.0000 0.4000 0.4634 1.0000 0.4084
TIDIER 0.6667 1.0000 0.8525 1.0000 0.2664
TRIS 1.0000 1.0000 0.9206 1.0000 0.2055

Table VIII
COMPARISON AMONG APPROACHES: RESULTS OF WILCOXON PAIRED

TEST AND CLIFF’S DELTA EFFECT SIZE ON LYNX.

Approach 1 Approach 2 adj p-value Cliff’s delta

TRIS Camel Case <0.001 0.743

TRIS Samurai <0.001 0.684

TRIS TIDIER <0.001 0.204

statistical comparison through Wilcoxon test indicates that

the difference is statistically significant (p-value < 0.001),

and that the Cliff’s delta effect size is medium (d = 0.456).

Table X reports the results of TRIS, in terms of precision,

recall, and F-measure, on the data set from Lawrie et al.
[9]. As it can be noticed, performances are very high, with

a median of 100% and a mean precision of 98%, recall of

94% and F-measure of 96%.

Table XI reports the accuracy of TRIS in terms of percent-

age of correct splittings, compared with the performances of

GenTest and Samurai as reported by Lawrie et al. [9]. As it

can be noticed, TRIS correctly splits identifiers in 86% of

the cases, while GenTest does it in 82% of the cases, and

Samurai in 70% of the cases.

When comparing the correctness of TRIS with the one

of GenTest, Fisher’s exact test does not indicate a signif-

icant difference (p-value=0.5), even though the achieved

correctness is higher for TRIS. We believe the comparison

would be insightful if precision, recall or F-measure were

provided because splitting correctness, in our case, is a

Boolean variable that returns (true) if the split is correct and

(false) if not. Thus, when the splitting is almost correct, i.e.,
most of the terms are correctly identified, the correctness

Table IX
PRECISION, RECALL AND F-MEASURE OF TRIS AND TIDIER ON THE

489 C SAMPLED IDENTIFIERS.

Metric Approach 1Q Median Mean 3Q σ
Precision TIDIER 0.4000 0.6667 0.6368 1.000 0.3681

TRIS 1.0000 1.0000 0.8933 1.0000 0.2471

Recall TIDIER 0.5000 0.6667 0.6496 1.000 0.3654
TRIS 1.0000 1.0000 0.872 1.0000 0.2606

F-measure TIDIER 0.4000 0.6667 0.6409 1.0000 0.3650
TRIS 1.0000 1.0000 0.879 1.0000 0.2524

110

Table X
PRECISION, RECALL AND F-MEASURE OF TRIS ON THE DATA SET

FROM LAWRIE et al..

Metric Approach 1Q Median Mean 3Q σ
Precision TRIS 1.0000 1.0000 0.9763 1.0000 0.1184

Recall TRIS 1.0000 1.0000 0.9439 1.0000 0.1565

F-measure TRIS 1.0000 1.0000 0.9559 1.0000 0.1358

Table XI
CORRECTNESS OF THE SPLITTING PROVIDED USING THE DATA SET

FROM LAWRIE et al..

Approach Identifier Splitting Correctness

Samurai 70%

GenTest 82%

TRIS 86%

would still be false. Unfortunately, this was the case for

several identifiers in the study of Lawrie et al.. Examples

of such identifiers are the ones prefixed with letters (e.g.,
mEnvironmentalistNb, sOS DriveDirectory, xGetJobStaus,

xgetAutomaticFocus, xgetColumnWidth, etc.) and that we

filtered as the letters can be generated by any dictionary word

prefixed with them. Also, even though the difference in the

strict correctness measure is not high (86%) against (82%)

for GenTest, the F-measure of our approach attains 96%.

The latter measure clearly shows that the novel approach

performs well on the overall data of Lawrie et al.. Also,

while GenTest generates all the possible splittings for each

hard-word of an identifier, the suggested approach only

returns the split with the minimum cost using a tree-based

representation that makes it efficient in terms of computation

time.

E. Discussion

Quantitative results reveal the importance of TRIS for

languages that are not promoted by the use of a consistent

naming convention (e.g., Java coding standards such as

Camel Case or underscore). Example of such languages

are C and C++ where developers tend to use many word

abbreviations. These results confirm the ones reported in [7]

and [10], in which the authors showed that Camel Case,

Samurai and TIDIER perform in a similar way on Java but

not C. In contrast to Java code where coding standards are

often strictly followed, C coding standards such as the Indian

Hill10 coding standards or the GNU coding standards11

do not enforce Camel casing; that is why both the novel

approach and TIDIER outperforms Camel Case and Samurai

(approaches that strictly follow Java coding standards) on

Lynx. Furthermore, the novel approach is more accurate than

TIDIER.

Wrong splittings provided by TRIS are due to identifiers

containing acronyms or short abbreviations. For example,

we believe that it is impossible to correctly split and expand

acronyms such as afaik or imho. We also believe that even

10http://www.chris-lott.org/resources/cstyle/
11http://www.gnu.org/prep/standards/

if we consider the context (i.e., the frequency of dictionary

words in the source code) in TRIS, it is impossible to find

the exact expansion of identifiers prefixed with letters such

as f in the identifier fsize because the mapping could vary

from file size to figure size depending on the JHotDraw code

region where fsize appears. Overall, the results show that the

novel approach performs accurately than previous ones on

the overall studied systems.

In addition to splitting and expansion performances, TRIS

has the advantage of performing reasonably fast: it takes

0.049 seconds to compile the JHotDraw dictionary (of 2,289

words) and 3.709 seconds to split/expand the 974 JHotDraw

identifiers, while it takes 0.053 seconds to compile the Lynx

dictionary (of 2,953 words) and 16.940 seconds to process

the 3085 Lynx identifiers. In fact, TIDIER computation time

increases with the increase of the dictionary size due to its

cubic distance evaluation cost plus the search time. Camel

Case splitter and Samurai performs fast their computations.

Yet, they are not accurate when naming conventions are not

used. Also, with the above timing performance, TRIS is able

to ensure it has a higher correctness than GenTest.

In summary, we can conclude the study stating that:

For Java programs properly following coding stan-

dards, a simple Camel Case splitter is enough. For

C programs, TRIS outperforms Camel Case splitter,

Samurai and TIDIER. Also, TRIS is slightly better

than GenTest in terms of effect size; it has 1.34 times

the chances of better splitting identifiers than GenTest,

although the difference is not statistically significant.

F. Threats to Validity

In this section, we present several threats to validity

associated with our evaluation.

Threats to construct validity concern the relation between

the theory and the observation. In this paper, this is mainly

due to possible mistakes in the oracles. We cannot guarantee

that some identifiers could have been split and expanded in

different ways by developers that originally created them,

as we might have a limited knowledge of the developers

intent. To limit this threat, we used different sources of

information such as comments, source code context, and

online documentation when producing the oracles. Another

threat could be the fact that a given string can be derived

from several dictionary words, e.g., the string imag can

be derived from image and imagination by applying word

transformations. We mitigated such a threat by considering

the identifier context, that is the frequency of source code

strings.

Threats to internal validity concern any confounding

factors that could have influenced our study results. Sub-

jectivity in building the oracles are limited by letting two

independent persons generating such oracles and comparing

the results. The choice of dictionaries could also influence

111

results. Nevertheless, we used a combination (application-

level dictionary + English words + a set of domain-specific

acronyms and abbreviations), which proven to produce the

best performance in a previous work [7].
Threats to conclusion validity concern the relations be-

tween the treatment and the outcome. Proper tests were

performed to address our research questions, and we comple-

mented statistical tests with effect size measures to estimate

the magnitude of the differences.
Threats to external validity concern the possibility of

generalizing our results. To make our results as generalizable

as possible, we analyzed Java, C, and C++ identifiers. We

believe the number of the analyzed systems is sufficient

enough to generalize our results. However, we cannot be

sure that our findings will be valid for other domains,

applications, or programming languages.

V. CONCLUSION

In this paper, we presented a two-phase approach named

TRIS to split and expand identifiers. TRIS takes as input a

dictionary of words, the identifiers to split, and the appli-

cation source code. First, TRIS pre-compiles transformed

dictionary words into a tree representation associating to

each transformation a cost. Then, in a second phase, it maps

the identifier splitting and expansion problem in a graph

optimization (minimization) problem to find the optimal

path (i.e., the optimal splitting-expansion) in an acyclic

weighted graph representing the identifier and all possible

transformations contributing to the identifier sub-strings.
As reported in the paper, we apply TRIS on a sample of

974 identifiers extracted from JHotDraw (Java), 3,085 Lynx

(C) identifiers, and on a sample of 489 C identifiers extracted

from 340 C programs, and compare its results with those of a

simple Camel Case splitter, and with alternative approaches,

i.e., Samurai [6] and TIDIER [7]. Then, we compare TRIS

with GenTest on a set of 2,663 mixed Java, C, and C++

identifiers used by Lawrie et al. to evaluate GenTest [9]

accuracy.
Results indicate that while for Java systems following ap-

propriate naming conventions—such as JHotDraw—simple

splitting approaches such as Camel Case are just enough,

on C systems, TRIS significantly outperforms Camel Case,

Samurai, and TIDIER with a medium to large effect size.

In addition, TRIS performs better than GenTest in terms of

accuracy on a data set from Lawrie et al. consisting in Java,

C, and C++ identifiers, even though the difference in accu-

racy is small (4%). Oppositely to GenTest, which generates

all possible splittings, TRIS uses a tree-based representation

that makes it—in addition to being more accurate than

other approaches—efficient in terms of computation time.

In fact, TRIS produces one optimal split and expansion fast

using an identifier processing algorithm having a quadratic

complexity in the length of the identifier to split/expand.
Future work will extend TRIS evaluation, study the impact

of different transformation types as well as the associated

transformation costs. Finally, we would like to investigate

the impact of software evolution on words frequencies

drift, and thus the impact of software evolution on TRIS

when frequencies drift but the dictionary is not recompiled.

Last but not least, we would investigate other types of

transformations to further improve TRIS accuracy.

REFERENCES

[1] F. Deissenbock and M. Pizka, “Concise and consistent nam-
ing,” in Proc. of the International Workshop on Program
Comprehension (IWPC), May 2005.

[2] A. Takang, P. A. Grubb, and R. D. Macredie, “The effects
of comments and identifier names on program comprehensi-
bility: an experiential study,” Journal of Program Languages,
vol. 4, no. 3, pp. 143–167, 1996.

[3] B. Caprile and P. Tonella, “Nomen est omen: Analyzing the
language of function identifiers,” in Proc. of the Working
Conference on Reverse Engineering (WCRE), Atlanta Georgia
USA, October 1999, pp. 112–122.

[4] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective
identifier names for comprehension and memory,” Innovations
in Systems and Software Engineering, vol. 3, no. 4, pp. 303–
318, 2007.

[5] ——, “What’s in a name? a study of identifiers,” in Pro-
ceedings of 14th IEEE International Conference on Program
Comprehension. Athens, Greece: IEEE CS Press, 2006, pp.
3–12.

[6] E. Enslen, E. Hill, L. L. Pollock, and K. Vijay-Shanker,
“Mining source code to automatically split identifiers for
software analysis,” in Proceedings of the 6th International
Working Conference on Mining Software Repositories, MSR
2009, Vancouver, BC, Canada, May 16-17, 2009, 2009, pp.
71–80.

[7] L. Guerrouj, M. Di Penta, G. Antoniol, and Y. G. Guéhéneuc,
“TIDIER: An identifier splitting approach using speech recog-
nition techniques,” Journal of Software Maintenance - Re-
search and Practice, p. 31, 2011.

[8] D. Lawrie and D. Binkley, “Expanding identifiers to normal-
ize source code vocabulary,” in Proc. of the International
Conference on Software Maintenance (ICSM), 2011, pp. 113–
122.

[9] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source
code vocabulary,” in Proc. of the Working Conference on
Reverse Engineering (WCRE), 2010, pp. 112–122.

[10] N. Madani, L. Guerrouj, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol, “Recognizing words from source code identifiers
using speech recognition techniques,” in Proceedings of the
14th European Conference on Software Maintenance and
Reengineering (CSMR 2010), March 15-18 2010, Madrid,
Spain. IEEE CS Press, 2010.

[11] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad
practical approach, 2nd ed. Lawrence Earlbaum Associates,
2005.

[12] S. Holm, “A simple sequentially rejective Bonferroni test
procedure,” Scandinavian Journal of Statistics, vol. 6, pp. 65–
70, 1979.

[13] D. J. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures (fourth edition). Chapman & All,
2007.

112

